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(1) Let C(x) = b+ 16x+ 4x2 be the cost function and p(x) = a− x the inverse demand function

of a monopolistic firm, with a, b > 0. Then:

(a) calculate the value of the parameter a, knowing that the production level to maximize the profit

is x∗ = 5.

(b) calculate the value of the parameter b, knowing that the production level to maximize the profit

per unit is x∗∗ = 4.

0.5 points part a); 0.5 points part b).

(a) First of all, we calculate the profit function.

B(x) = (a− x)x− (b+ 16x+ 4x2) = −5x2 + (a− 16)x− b

Secondly, we calculate the first and second order derivatives of B:

B′(x) = −10x+ a− 16;B′′(x) = −10 < 0

we see that B has an unique critical point at x∗ =
a− 16

10
and, since B is a concave function, the

critical point is the global maximizer.

Finally x∗ = 5 =
a− 16

10
=⇒ a− 16 = 50 =⇒ a = 66.

(b) The profit per unit function is
B(x)

x
= −5x+ (a− 16)− b

x
,

we calculate its first and second order derivative functions:

(
B(x)

x

)′

= −5+
b

x2
= 0 ⇐⇒ x2 =

b

5
.

Since

(
B(x)

x

)′′

= − 2b

x3
< 0, The function is concave and the critical point is the global maximizer.

Then x∗∗ = 4 =

√
b

5
=⇒ b = 80.



(2) Given the implicit function y = f(x), defined by the equation ex+y +xy2 = e in a neighbour-

hood of the point x = 1, y = 0, it is asked:

(a) find the tangent line and the second-order Taylor Polynomial of the function f at a = 1.

(b) sketch the graph of the function f near the point x = 1, y = 0.

(c) use second-order Taylor Polynomial of f(x) to obtain the approximate values of f(0, 9) and f(1, 2).

Use this polynomial to compare f(1) with 2
3f(0, 9) +

1
3f(1, 2).

(Hint for parts (b) and (c): use that f ′′(1) < 0).

0.4 points part a); 0.2 points part b) 0.4 points part c).

(a) First of all, we calculate the first-order derivative of the equation:

ex+y(1 + y′) + y2 + 2xyy′ = 0

evaluating at x = 1, y(1) = 0 we obtain: y′(1) = f ′(1) = −1.

Then the equation of the tangent line is: y = P1(x) = −(x− 1) o x+ y = 1.

Secondly, we calculate the second-order derivative of the equation:

ex+y[(1 + y′)2 + y′′] + 2yy′ + 2yy′ + 2x(y′)2 + 2xyy′′ = 0

evaluating at x = 1, y(1) = 0, y′(1) = −1 we obtain y′′(1) = f ′′(1) = −2/e.

Therefore, the second-order Taylor Polynomial is: y = P2(x) = −(x− 1)− 1
e (x− 1)2.

(b) Using the second-order Taylor Polynomial, the approximate graph of the function f, near the point

x = 1, will be as you can see in the figure underneath.

(c) On the other hand, using this Taylor Polynomial, we obtain:

f(0, 9) ≈ 0, 1− 1

e
0, 01; f(1, 2) ≈ −0, 2− 1

e
0, 04 =⇒

2
3f(0, 9) +

1
3f(1, 2) = −1

e
0, 02 < 0 = f(1) = f( 230, 9 +

1
31, 2).

And this is reasonable since, f(x) is concave function near x = 1.



(3) Consider the function f(x) =

√
x2 + 1

x+ 1
. Then:

(a) find the domain and the asymptotes of function f(x).

(b) find the intervals where f(x) increases and decreases and its range. Draw the graph of the function.

(c) consider f1(x) to be the function f(x) defined on the interval [0,∞). Find, if they exist, the global

extreme points of f1(x).

0.4 points part a); 0.4 points part b); 0.2 points part c)

(a) First of all, the domain of the function is R− {−1}.

If we calculate the right-hand sided limit at x = −1, we obtain limx→−1+

√
x2 + 1

x+ 1
=

√
2

0+
= ∞.

Analogously, we calculate the left-hand sided limit at the point, limx→−1−

√
x2 + 1

x+ 1
=

√
2

0−
= −∞.

Therefore, f(x) has a vertical asymptote at x = −1.

Secondly, to find horizontal asymptotes we calculate the limit towards∞, to obtain limx→∞

√
x2 + 1

x+ 1
=(dividing

the numerator and denominator by x ) = = limx→∞

√
1 + 1/x2

1 + 1/x
= 1.

Then f has an horizontal asymptote y = 1 at ∞.

Moreover, we calculate the limit at −∞ of f and we obtain limx→−∞

√
x2 + 1

x+ 1
=(dividing the nu-

merator and denominator by−x, that we introduce inside the square root as 1/x2 ) = limx→∞

√
1 + 1/x2

−1− 1/x
=

−1.

Then, f has an horizontal asymptote y = −1 at −∞. Obviously, because there are both horizontal

asymptotes then oblique asymptotes do not exist.

(b) In order to study the monotonicity of the function, we calculate the sign of its derived function:

f ′(x) = (

√
x2 + 1

x+ 1
)′ =

(2x/2
√
x2 + 1)(x+ 1)−

√
x2 + 1

(x+ 1)2
=

x(x+ 1)− (x2 + 1)

(x+ 1)2
√
x2 + 1

=

=
x− 1

(x+ 1)2
√
x2 + 1

, since the denominator is always positive the sign of the derived function is

calculated by the numerator x− 1, and we concluded that:

i) f ′(x) > 0 ⇔ x ∈ (1,∞), then f is increasing on [1,∞).

ii) f ′(x) < 0 ⇔ x ∈ (−∞,−1) ∪ (−1, 1), then f is decreasing on (−∞,−1) and (−1, 1).

To find the range, since f(x) is continuous in its domain and using the intermediate value theorem

we say:

i) the range of the interval (−∞,−1) is (−∞,−1).

ii) the range of the interval (−1,∞), taking into account that f(1) =

√
2

2
, is [

√
2

2
,∞).

Thus, the range of f is (−∞,−1) ∪ [

√
2

2
,∞).

The graph of f(x) will have an appearance approximately, similar to this one:



(c) About the global extreme points of f1, x = 1 is the global minimizer, since f1 is decreasing on [0, 1]

and increasing on [1,∞).

On the other hand, x = 0 is the global maximizer of f1(x) since, f1 is decreasing on [0, 1] and

increasing on [1,∞) and f1(x) has the horizontal asymptote y = 1 = f1(0), we can confirm that

f1(x) ≤ 1 = f1(0).



(4) Let

f(x) =


ln(x2 + 1)

x
, x ̸= 0

0 , x = 0

you are asked:

(a) prove that the function is derivable at x = 0.

(b) find the asymptotes of the function.

(c) consider f1(x) to be the function f(x) defined on the interval [0,∞). Find the global minimum of

this function. Study if this function attains its global maximum. (Hint: You only need to prove if

the global maximum exists or not.)

0.4 points part a); 0.2 points part b); 0.4 points part c)

(a) To begin with, we study if the function is continuous x = 0.

lim
x−→0

f(x) = lim
x−→0

ln(x2 + 1)

x
= 0

0 =(L’Hopital)= lim
x−→0

2x

x2 + 1
= 0, then it is continuous at x = 0.

Now, we study if the function is derivable at the same point, since it is continuous, we need to

prove the existence of the limit:

lim
x−→0

f ′(x) = lim
x−→0

[2x/(x2 + 1)]x− ln(x2 + 1)

x2
= lim

x−→0

2x2/(x2 + 1)

x2
− lim

x−→0

ln(x2 + 1)

x2
.

Obviously the first limit is equal to 2. And we calculate the second:

lim
x−→0

ln(x2 + 1)

x2
= 0

0 =(L’Hopital)= lim
x−→0

2x/(x2 + 1)

2x
= 1.

Then, we can say that f ′(0) = 2− 1 = 1.

(b) Since the function is continuous in its domain there are not any vertical asymptotes.

About asymptotes at infinitum:

lim
x−→∞

ln(x2 + 1)

x
= ∞

∞ =(L’Hopital)= lim
x−→∞

2x

x2 + 1
= 0, then there is a horizontal asymptote:

y = 0.

Analogously, y = 0 is the asymptote at −∞.

(c) Since f(x) > 0 if x > 0 (because ln(1 + x2) > ln 1 = 0, when x > 0),

we can say that x = 0 is the global minimizer and f(0) = 0 is the global minimum.

The global maximum also exists, as the function is continuous, lim
x−→∞

f(x) = 0 and given

f(1) = ln 2 > 0, we can find M > 0 such that, f(x) < f(1) if x > M .

Now, using Weierstrass’ Theorem to f in the interval [0,M ], we know that exists x∗ maximizer of

f in the interval.

Obviously, x∗ is also the maximizer of f in [0,∞).

You can observe this in the following graph:



(5) Given the functions f, g : [−1, 1] −→ R, defined by: f(x) = e−2x, g(x) = e−x/2, then:

(a) draw approximately the set A, bounded by the graph of these functions and the straight lines

x = −1,x = 1. Find, if they exist, the maximal and minimal elements, the maximum and the

minimum of A.

(b) calculate the area of the given set.

Hint for part (a): Pareto order is defined as: (x0, y0) ≤P (x1, y1) ⇐⇒ x0 ≤ x1, y0 ≤ y1.

0.6 points part a); 0.4 points part b).

(a) First of all, we can notice f(0) = g(0) = 1. Secondly:

i) if x > 0, f (x) < g(x), since
f(x)

g(x)
= e−3x/2 < 1; and

ii) if x < 0, f (x) > g(x), since
f(x)

g(x)
= e−3x/2 > 1.

Moreover, f(x), g(x) > 0; we can deduce that the draw of A will be approximately like,

Then, Pareto order describes the set properties:

maximum of (A), minimum of (A) don’t exist.

maximals of (A) = {(x, f(x)) : −1 ≤ x ≤ 0} ∪ {(x, g(x)) : 0 ≤ x ≤ 1}.
minimals of (A) = {(x, g(x)) : −1 ≤ x ≤ 0} ∪ {(x, f(x)) : 0 ≤ x ≤ 1}.

(b) First of all, looking at the position of the graphs we know that:

area(A)=
0∫

−1

(e−2x − e−x/2)dx+
1∫
0

(e−x/2 − e−2x)dx =

= [−e−2x/2 + 2e−x/2]0−1 + [−2e−x/2 + e−2x/2]10 =

= [−1/2 + 2 + e2/2− 2e1/2] + [−2e−1/2 + e−2/2 + 2− 1/2] =

= 3 + e2/2− 2e1/2 − 2e−1/2 + e−2/2 area units.


