Universidad Carlos III de Madrid

Departamento de Economía

Examen Final de Matemáticas I

20 de Junio de 2012

Duración del Examen: 2 horas.

APELLIDOS:		NOMBRE:
DNI:	Titulación:	Grupo:

- (1) Sea la función $f(x) = \ln(x^2 1)$. Se pide:
 - (a) Representa la gráfica de f(x) hallando previamente el dominio, las asíntotas, los intervalos de crecimiento y decrecimiento y la imagen de f(x).
 - (b) Considera la función f(x) restringida al intervalo $(1,\infty)$. Halla la expresión analítica de $f^{-1}(x)$ y dibuja la gráfica de $f^{-1}(x)$.

1 punto

a) El dominio de la función anterior consiste en los puntos en los que se cumple que $x^2 - 1 > 0$. Es decir, Dominio $(f) = (-\infty, -1) \cup (1, \infty)$.

Asíntotas verticales en x = -1, x = 1, pues

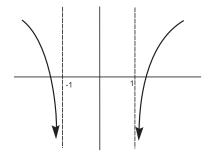
$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = \ln(0^{+}) = -\infty$$

$$\lim_{x \longrightarrow -1^{-}} f(x) = \lim_{x \longrightarrow 1^{+}} f(x) = \ln(0^{+}) = -\infty$$
 Asimismo, no hay asíntotas ni horizontales ni oblicuas, pues
$$\lim_{x \longrightarrow \pm \infty} f(x) = \infty, \lim_{x \longrightarrow \pm \infty} \frac{f(x)}{x} = (L'Hopital) = \lim_{x \longrightarrow \pm \infty} \frac{2x/(x^{2}-1)}{1} = 0$$
 Por otro lado, como $f'(x) = \frac{2x}{x^{2}-1}$, siendo $x^{2}-1>0$,

se deduce que f es decreciente en el intervalo $(-\infty, -1)$ y creciente en $(1, \infty)$.

Por último, como $\lim_{x \to 1^+} f(x) = -\infty$, $\lim_{x \to \infty} f(x) = \infty$ y la función es continua en $(1, \infty)$, la imagen es \mathbb{R} .

Así pues, la gráfica de la función f(x) será, aproximadamente, así:



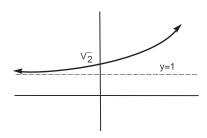
b) Partimos de la ecuación $y = f(x) = \ln(x^2 - 1)$.

A continuación, observamos las equivalencias: $e^y = x^2 - 1 \iff e^y + 1 = x^2$.

Y ahora, como x > 0, la ecuación anterior equivale a: $x = \sqrt{e^y + 1}$.

Pues bien, la función inversa es: $y = f(x) = \sqrt{e^x + 1}$.

La gráfica de la función $f^{-1}(x)$ será, aproximadamente, así:



(2) Sea $f(x) = a + x + \frac{1}{x-2}$, donde $a \geqslant 0$ es un parámetro. Se pide:

- (a) Hallar el valor del parámetro para que $f(x_0) = 5$, siendo x_0 el punto donde la función alcanza su único máximo local o relativo.
- (b) Hallar el valor del parámetro que minimiza la integral $\int_3^4 f(x)dx$. Sugerencia: las partes a) y b) son independientes.

1 punto

a) En primer lugar, derivamos la función:

$$f'(x) = 1 - (x-2)^{-2}, f''(x) = 2(x-2)^{-3}.$$

A continuación, igualamos la derivada a 0 y obtenemos los puntos críticos:

$$f'(x) = 0 \iff 1 = (x-2)^{-2} \iff x = 1, x = 3.$$

Finalmente, sustituimos la derivada segunda en los puntos críticos y obtenemos que:

$$f''(1) < 0 \Longrightarrow x_0 = 1$$
 es máximo local.

Como
$$f(1) = a + 1 - 1 = 5 \implies a = 5$$
.

b) Como $\int_3^4 f(x) dx = \int_3^4 (a+x+(x-2)^{-1}) dx = [ax+\frac{x^2}{2}+\ln(x-2)]_3^4 = a+\frac{7}{2}+\ln 2$, dicha integral toma su valor mínimo cuando a=0.

(3) Sea C'(x) = 30 + 8x la función de costes marginales y $C_0 = 100$ los costes fijos de una compañía monopolista. Se pide:

- (a) Hallar la producción x_0 que minimiza el coste medio de dicha compañía.
- (b) Sabiendo que la función de demanda es p(x) = 100 x, hallar el precio que maximiza el beneficio de dicha compañía.

Observación: justificar las respuestas.

1 punto

a) Como la función de costes es $C(x) = 4x^2 + 30x + 100$, la función de costes medios será:

$$\frac{C(x)}{x} = 4x + 30 + \frac{100}{x}$$
. Derivando esta función, obtenemos:

Como la ranción de costes es
$$C(x) = 1x^2 + 66x^2 + 100$$
, la ranción, esta función, obtenemos: $(\frac{C(x)}{x})' = 4 - 100/x^2$, luego el único punto crítico es $x_0 = 5$.

Y, observando que la función de costes medios es convexa, pues $(\frac{C(x)}{x})$ " > 0. Por tanto, el punto crítico será el único minimizador global de los costes medios.

b) En primer lugar, como $B(x) = (100 - x)x - (4x^2 + 30x + 100) = -5x^2 + 70x - 100$,

derivando la función de beneficios e igualando a cero se obtiene que:

$$B'(x) = -10x + 70 = 0 \iff x = 7$$
 es el único punto crítico.

Y, como la función de beneficios es cóncava, pues B''(x) = -10 < 0, dicha producción es la que maximiza el beneficio.

Por lo tanto, el precio que maximiza el beneficio es p(7) = 100 - 7 = 93.

(4) Dada la función $f(x) = xe^{1-x}$, se pide:

- (a) Calcular los intervalos de concavidad y convexidad, así como los puntos de inflexión de f(x).
- (b) Hallar la recta tangente y el polinomio de Taylor de orden 2 correspondientes a un punto de inflexión, y representar la gráfica cerca de ese punto.

1 punto

a) Calculemos las derivadas primera y segunda de esta función.

$$f'(x) = e^{1-x} - xe^{1-x} = (1-x)e^{1-x};$$

$$f''(x) = -e^{1-x} - (1-x)e^{1-x} = (x-2)e^{1-x}$$

Luego f es cóncava si x < 2, puesto que f''(x) < 0

Luego f es convexa si x > 2, puesto que f''(x) > 0

Y, por tanto, x = 2 es el único punto de inflexión.

b) La ecuación de la recta tangente correspondiente al punto $x_0=2$ es:

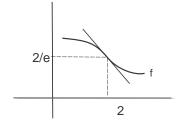
$$y - f(2) = f'(2)(x - 2)$$
; y, como $f(2) = \frac{2}{e}$, $f'(2) = \frac{-1}{e}$, la ecuación de la recta tangente resulta

ser:
$$y - \frac{2}{e} = -\frac{1}{e}(x - 2).$$
 Finalments, come la

Finalmente, como la derivada segunda de la función es cero en el punto $x_0 = 2$,

la ecuación de la recta tangente es la misma que la del polinomio de Taylor de orden 2 en dicho punto.

La gráfica de la función, por tanto, cerca del punto $(2, \frac{2}{e})$ será, aproximadamente, así:



(5) Sea A el conjunto acotado comprendido entre la curva $y = xe^{2x}$ y las rectas y = x, x = 2. Se pide:

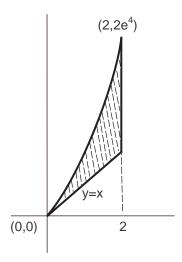
- (a) Representar el conjunto A y hallar los maximales y minimales, máximo y mínimo de A, si existen.
- (b) Calcular el área del recinto anterior.

Sugerencia: el orden de Pareto viene dado por: $(x_0, y_0) \leq_P (x_1, y_1) \iff x_0 \leq x_1, y_0 \leq y_1$.

1 punto

a) Como $e^{2x} > 1$ si x > 0 y $e^{2x} < 1$ si x < 0, obtenemos que $xe^{2x} > x$ si $x \ne 0$.

Por lo tanto, el único recinto acotado determinado por esas funciones está contenido en el primer cuadrante y tiene una forma así:



Obviamente, $m\acute{a}ximo(A) = \{maximales(A)\} = \{(2, 2e^4)\}.$

 $Minimo(A) = \{ \mininimales(A) \} = \{ (0,0) \}.$

b) El área solicitada es:

$$\int\limits_{0}^{2} (xe^{2x} - x)dx;$$

$$\int xe^{2x} = x\frac{e^{2x}}{2} - \int \frac{e^{2x}}{2} = x\frac{e^{2x}}{2} - \frac{e^{2x}}{4}$$

Para hallar la integral anterior, debemos calcular la primitiva de la función xe^{2x} por partes: $\int xe^{2x} = x\frac{e^{2x}}{2} - \int \frac{e^{2x}}{2} = x\frac{e^{2x}}{2} - \frac{e^{2x}}{4}$ Luego el área total es $\int_0^2 (xe^{2x} - x)dx = [x\frac{e^{2x}}{2} - \frac{e^{2x}}{4} - \frac{x^2}{2}]_0^2 = 2\frac{e^4}{2} - \frac{e^4}{4} - \frac{2^2}{2} + \frac{1}{4} = \frac{3e^4}{4} - \frac{7}{4}$

(6) Dada la función $f(x) = \frac{\ln(1+x)}{1+x}$, se pide:

- (a) Hallar la primitiva F(x) de f(x) que cumpla que F(0) = 3. Hallar también los intervalos en los cuales F es creciente, decreciente y los máximos y mínimos de F.
- (b) Hallar el polinomio de Taylor de segundo orden de F centrado en a=0, y utilizarlo para obtener una aproximación del valor de F(0,1).

Sugerencia: para el apartado b) quizás no sea necesario hallar la función F(x).

1 punto

- a) La primitiva es inmediata: $F(x) = \frac{1}{2} \ln^2(1+x) + C$. Y como se debe cumplir que $F(0) = 3 \Longrightarrow F(x) = \frac{1}{2} \ln^2(1+x) + 3$ Así pues, tenemos que:
 - i) F(x) is decreciente en (-1,0), pues en ese intervalo F'(x)=f(x)<0.
 - ii) F(x) es creciente en $(0, \infty)$, pues en ese intervalo F'(x) = f(x) > 0.

De ahí se deduce que F(x) alcanza un mínimo global en x = 0.

b) La ecuación del polinomio de Taylor de F centrado en a=0 es:

$$P(x) = F(0) + F'(0)x + \frac{1}{2}F''(0)x^{2}$$

En primer lugar, hallemos $F''(x) = f'(x) = \frac{1 - \ln(1+x)}{(1+x)^2}$ Como F(0) = 3, F'(0) = f(0) = 0, 1F''(0) = 1, ose deduce que

 $P(x) = 3 + \frac{1}{2}x^2$.

Luego $F(0,1) \approx P(0,1) = 3 + \frac{1}{2}0,01 = 3,005$