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(1) Consider the function f(x) = eQ(x), where Q(x) =
x2

x− 1
.

(a) Draw the graph of f(x) finding previously the domain, the asymptotes, the increasing

and decreasing intervals of f(x), its local/global extrema and the range of f(x).

(b) Let f(x) be defined on the interval [2,∞). Draw the graph of f−1(x),

finding previously the domain, the range, and the increasing and decreasing

intervals of f−1(x).

Hint for b: solve it graphically, don’t try to find the equation of f−1(x).

0.6 points part a); 0.4 points part b).

a) El domain of f is the set of the real numbers, except the point x = 1.

There is a vertical asymptote at x = 1+, because lim
x−→1+

x2

x− 1
= ∞ =⇒ lim

x−→1+
f(x) = ∞.

Also, lim
x−→1−

x2

x− 1
= −∞ =⇒ lim

x−→1−
f(x) = 0.

There can be no more vertical asymptotes, as the function is continuous when x 6= 1.

On the other hand, there is a horizontal asymptote in−∞, as lim
x−→−∞

x2

x− 1
= −∞ =⇒ lim

x−→−∞

f(x) =

0.

Analogously, as lim
x−→∞

f(x)

x
= ∞

∞
= ( by the L’Hopital’s rule)

= lim
x−→∞

f(x)
x2 − 2x

(x − 1)2
= ∞ =⇒ it doesn’t exist horizontal nor oblique asymptotes in ∞.

About the monotonicity of the function, we compute the derivative and find that, if x 6= 1:

f ′(x) = f(x)
x2 − 2x

(x − 1)2
, so we deduce that:

f is increasing on (−∞, 0] and on [2,∞), as f ′(x) > 0 on (−∞, 0) and on (2,∞).

f es decreasing on [0, 1) and on (1, 2], as f ′(x) < 0 on (0, 1) and on (1, 2).

So f has a local maximum at x = 0 and a local minimum at x = 2.

For that reason, its range will be (0, 1] ∪ [e4,∞).

Finally, the graph of the function f(x) will be, approximately, like the first figure:
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b) We begin with the function f(x), continuous and increasing on [2,∞) and with range [e4,∞).

So, its inverse function is continuous and increasing, and this inverse function has as domain

the interval [e4,∞) and its range is the interval [2,∞).

Finally, the graph of the function f−1(x) will be, approximately, the second figure.



(2) Let y = f(x) be the function defined in a implicit way near the point (2, 1) by the equation:

4xy − (x2 + y2) = 3.

(a) Find the first and second derivatives of the function f at the point x = 2, y = 1.

(b) Find the tangent line and the second order Taylor’s polynomial of the function

f at the point (2, 1). Draw the graph of f near that point.

0.4 points part a; 0.6 points part b

a) First of all, we derivate the equation:

4(y + xy′)− 2(x+ yy′) = 0.

Substituting on that equation x = 2, y = 1 we obtain:

4 + 8y′ − 4− 2y′ = 0 =⇒ y′ = 0.

Derivating again the equation without the substitutions:

4(2y′ + xy”)− 2(1 + (y′)2 + yy”) = 0.

Substituting on the last equation x = 2, y = 1, y′ = 0 we obtain:

8y”− 2(1 + y”) = 0 =⇒ 6y” = 2 =⇒ y” = 1
3 .

b) The tangent line will have as equation:

y = 1.

The Taylor polynomial of order 2 will have as equation:

y = 1 + 1
2 (

1
3 )(x − 2)2.

For that reason, the implicit function will have a local minimum near the point x = 2,

and its graph will be, approximately, this way:
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(3) Let C(x) =
√
x2 − 2x+ 4 be the cost function for a monopolist firm, where

x ≥ 0 represents the quantity in kilograms of the output.

(a) Find the equation of the tangent line to C(x) in x = 2, and compute an

approximation of the value of C( 2, 1).

(b) Let’s suppose now that the new cost function is C1(x) = f(C(x)), where f(x) is

an increasing and derivable function such that f(2) = 1, f ′(2) = 3. Calculate, for

the new cost function, the equation of the tangent line to C1(x) in x = 2, and

find an approximation to the value of C1( 2, 1).

Have the marginal costs increased or decreased in x = 2, with respect to part a)?

0.4 points part a; 0.6 points part b

a) First of all, C′(x) =
x− 1√

x2 − 2x+ 4
, so C′(2) = 1

2 .

On the other hand, as C(2) = 2, the equation of the tangent line will be:

y = 2 + 1
2 (x− 2)

Now, approximating C(2, 1) by the tangent line, we obtain:

C(2, 1) ≈ 2 + 1
2 (2, 1− 2) = 2, 05 monetary units.

b) First of all, C′

1(x) = f ′(C(x)).C′(x) , so C′

1(2) = f ′(2).C′(2) = 3
2 .

On the other hand, as C1(2) = f(2) = 1, the equation of the tangent line will be:

y = 1 + 3
2 (x− 2)

Now, approximating C1(2, 1) by the tangent line, we obtain:

C1(2, 1) ≈ 1 + 3
2 (2, 1− 2) = 1, 15 monetary units.

Obviously, the marginal costs have increased in x = 2, as they have changed

its value before from 1
2 , to have a value now of 3

2 .



(4) Let a, b be real numbers and consider the following piecewise function

f(x) =











ae4x − be−4x si x < 0

0 si x = 0

x+ ln(1 + 2ax+ 2bx) si x > 0

(a) Discuss, depending on the values of a, b > 0, the continuity of the function on the real line.

(b) Discuss, depending on the values of a, b > 0, the derivability of the function on the real line.

1 point

a) For any value a, b > 0 the function is continuous if x 6= 0.

Moreove, at x = 0, the function is continuous by the left if it is verified that:

lim
x−→0−

f(x) = f(0) ⇐⇒ a− b = 0 ⇐⇒ a = b.

On the other hand, the function is continuous at 0+ for any a, b > 0.

So it is satisfied that f(x) is continuous in every x when a = b > 0.

b) Of course, when x 6= 0 the previous function is derivable for any a, b > 0.

With respect to the point x = 0, let’s compute the lateral derivatives, using

that the function is continuous in such point when a = b.

f ′

−
(0) = lim

x−→0−
f ′(x) = lim

x−→0−
4ae4x + 4be−4x = 4(a+ b)

f ′

+(0) = lim
x−→0+

f ′(x) = lim
x−→0+

(1 +
2(a+ b)

1 + 2ax+ 2bx
) = 1 + 2(a+ b).

So the function will be derivable at every point when a = b, 2(a+ b) = 1.

In other words, when a = b = 1
4



(5) Let’s consider the set of points A on the plane, bounded by the graphs of the functions

y =
1

1 + x
, y = −e−x and the lines x = 0, x = 1.

(a) Draw the set A and find the maximal, minimal, maximum and minimum points of A,

if they exist.

(b) Calculate the area of the region A.

Hint for a: Pareto order is defined by: (x0, y0) ≤P (x1, y1) ⇐⇒ x0 ≤ x1, y0 ≤ y1.

Hint for b: Don’t express the value of the area in decimal numbers.

0.6 points part a; 0.4 points part b

a) The function f(x) =
1

1 + x
is positive and decreasing on the interval [0, 1],

and the function g(x) = −e−x is negative and increasing on the same interval

(it is enough to check that g′(x) = e−x > 0).

Moreover, as f(0) = 1 > −1 = g(0), f(1) = 1
2 > − 1

e
= g(1), the set A will have a shape,

approximately, in this way:
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Obviously, by the drawing you can deduce that

{maximals(A)} = {(x, y) : 0 ≤ x ≤ 1, y =
1

1 + x
} =⇒ maximum(A) does not exist.

{minimals(A)} = {(0,−1)} = { minimum(A)}.

b) The area of interest is the one below the rational function and above the

exponential function, bounded by the vertical lines x = 0, x = 1.

The area is, for that reason:
1
∫

0

(
1

1 + x
− (−e−x))dx =

1
∫

0

(
1

1 + x
+ e−x)dx

Integrating in a direct way:
∫

(
1

1 + x
+ e−x)dx = ln(1 + x) − e−x

So, appliying the Barrow’s rule, you can obtain that the value of the area is:
1
∫

0

(
1

1 + x
+ e−x)dx = [ln(1 + x)− e−x]10 = ln 2− e−1 − (0− 1) =

= 1− e−1 + ln 2 area units.



(6) Given the function f(x) =
x3

1 + x4
, defined on [0, 2], we ask:

(a) Find the area bounded between the graph of such function, the horizontal

axis and the vertical line x = 2.

(b) Calculate approximately, using the Taylor polynomial of order 2 of

F (x) =

∫ x

1

f(t)dt centered at x = 1, the area bounded between the graph

of such function f , the horizontal axis and the vertical lines x = 1 and x = 1, 1.

0.4 points part a; 0.6 points part b

a) f(x) is a continuous and positive function on the interval [0, 2].

So the area of interest is equal to the integral

∫ 2

0

x3

1 + x4
dx .

The primitive of f is
∫ x3

1 + x4
= 1

4 ln(1 + x4).

So, the area of interest is, by Barrow’s rule, equal to:
∫ 2

0

x3

1 + x4
dx = [

1

4
ln(1 + x4)]20 =

1

4
ln(17) area units.

b) As the Taylor polynomial, centered at x = 1, of the function F (x) is:

P (x) = F (1) + F ′(1)(x− 1) + 1
2F”(1)(x− 1)2

then, P (1, 1) is an approximation of F (1, 1) =

∫ 1,1

1

f(t)dt, the requested area.

Obviously, F (1) =

∫ 1

1

f(t)dt = 0,

F ′(1) =(by the fundamental theorem of calculus)= f(1) = 1
2 .

And, as f ′(x) =
3x2(1 + x4)− 4x3x3

(1 + x4)2
=

3x2 − x6

(1 + x4)2
=⇒ F”(1) = f ′(1) = 1

2

For those reasons, P (x) = 1
2 (x − 1) + 1

4 (x− 1)2.

So, approximated area= P (1, 1) = 1
2 .0, 1 +

1
4 .0, 01 = 0, 0525 area units.


