Universidad Carlos III de Madrid

Economics Department		Final Exam Mathematics I	June 20, 2012
		Time length: 2 hours	
LAST NAMES:		FIRST NAME:	
DNI:	Title:	Group:	

(1) Let function $f(x) = \ln(x^2 - 1)$

- (a) Represent the graph of f(x) after finding its domain, asymptotes, intervals at which it is increasing and decreasing, and its image.
- (b) Restrict f(x) to the interval $(1, \infty)$. Find the corresponding analytical expression of $f^{-1}(x)$ and draw the graph of $f^{-1}(x)$.

 $1 \operatorname{point}$

a) The domain of f is restricted by the requirement $x^2 - 1 > 0$. So the domain is $(-\infty, -1) \cup (1, \infty)$. Now, f has vertical asymptotes both at x = -1 and at x = 1, since

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{+}} f(x) = \ln(0^{+}) = -\infty.$$

On the other hand, it has neither horizontal nor oblique asymptotes, because

$$\lim_{x \to \pm \infty} f(x) = \infty; \ \lim_{x \to \pm \infty} \frac{f(x)}{x} = (L'Hopital) = \lim_{x \to \pm \infty} \frac{2x/(x^2 - 1)}{1} = 0.$$

Since $f'(x) = \frac{2x}{x^2 - 1}$, where $x^2 - 1 > 0$, we have that f is decreasing on $(-\infty, -1)$ and increasing on $(1, \infty)$.

Lastly, since $\lim_{x \to 1^+} f(x) = -\infty$ and $\lim_{x \to \infty} f(x) = \infty$, and f is continuous on $(1, \infty)$, its image is \mathbb{R} . From all of this, we can draw a sketch of f as follows:

b) First we set $y = f(x) = \ln(x^2 - 1)$. Next, notice that $e^y = x^2 - 1 \iff e^y + 1 = x^2$. Now, since x > 0, we have that $x = \sqrt{e^y + 1}$. Changing variables we conclude that

$$y = f^{-1}(x) = \sqrt{e^x + 1}$$

A sketch of $f^{-1}(x)$ is:

(2) Let

$$f(x) = a + x + \frac{1}{x - 2},$$

where $a \ge 0$ is a parameter.

- (a) Find the value of a such that $f(x_0) = 5$, where x_0 is the point at which f reaches its unique local maximum.
- (b) Find the value of a that minimizes the integral $\int_3^4 f(x) dx$. Remark: parts a) and b) are independent.

1 point

a) First, let's find the first and second derivatives of f:

$$f'(x) = 1 - (x - 2)^{-2}; \ f''(x) = 2(x - 2)^{-3}.$$

Next, we set f'(x) equal to 0 to obtain the critical points:

$$f'(x) = 0 \iff 1 = (x - 2)^{-2} \iff x = 1, x = 3.$$

Finally, evaluating f''(x) at the critical points we find that f''(1) < 0. It follows that $x_0 = 1$ is a local maximum. Since $f(1) = a + 1 - 1 = 5 \implies a = 5$.

b) Since

$$F(a) = \int_{3}^{4} (a + x + (x - 2)^{-1}) dx = \left[ax + \frac{x^{2}}{2} + \ln(x - 2) \right]_{3}^{4} = a + \frac{7}{2} + \ln 2,$$

F(a) reaches a minimum value when a = 0 (remember that $a \ge 0$).

- (3) Let C'(x) = 30 + 8x be the marginal cost function, and $C_0 = 100$ the fixed costs of a monopolistic firm.
 - (a) Find production level x_0 at which average costs are minimized.
 - (b) The demand function for the firm being p(x) = 100 x, find the price that maximizes the profit of the firm.

Remark: justify your answers.

1 point

a) Integrating C'(x), and using the given fixed costs, we have that the total cost function is

$$C(x) = 4x^2 + 30x + 100.$$

The average cost function would then be

$$MC(x) = \frac{C(x)}{x} = 4x + 30 + \frac{100}{x}$$

So that $AC'(x) = 4 - 100/x^2$. It follows that the only critical point is $x_0 = 5$. Now we notice that AC(x) is convex, since $AC''(x) = 200/x^3 > 0$ when x > 0, the relevant domain.

It follows that the critical point is the unique global minimum of the average cost function.

b) First, the profit function is

$$P(x) = (100 - x)x - (4x^{2} + 30x + 100) = -5x^{2} + 70x - 100$$

If we set P'(x) - 10x + 70 to zero, we get that x = 7 is the only critical point. Now P(x) is strictly concave, since P''(x) = -10 < 0, so that the critical point indeed maximizes benefits. It follows that the price which maximizes profits is p(7) = 100 - 7 = 93.

- 4. Given $f(x) = xe^{1-x}$,
 - (a) Find the intervals of concavity and convexity, as well as the inflexion points of f(x).
 - (b) Find the tangent line and Taylor's second degree polynomial at an inflexion point, and represent the graph of f around that point.

```
1 point
```

a) Let's find the first and second derivatives of f:.

$$f'(x) = e^{1-x} - xe^{1-x} = (1-x)e^{1-x}$$

$$f''(x) = -e^{1-x} - (1-x)e^{1-x} = (x-2)e^{1-x}$$

It follows that f is concave when $x \le 2$, since $f''(x) \le 0$ there. On the other hand, f is convex if $x \ge 2$, since $f''(x) \ge 0$ there. Hence x = 2 is the unique inflexion point of f.

b) The equation of the tangent line of f at $x_0 = 2$ is y - f(2) = f'(2)(x-2). Since $f(2) = \frac{2}{e}$, $f'(2) = \frac{-1}{e}$, the tangent line equation is given by

$$y - \frac{2}{e} = -\frac{1}{e}(x - 2).$$

Finally, since f''(2) = 0, Taylor's second degree polynomial has the same equation as the tangent line at that point.

A sketch of f around (2, 2/e) is:

- 5. Let A be the bounded set between curve $y = xe^{2x}$ and the lines y = x and x = 2.
 - (a) Graph the set A and find its maximals, minimals, maximum and minimum, if they exist.
 - (b) Find the area of A.
 Hint: the Pareto order is given by: (x₀, y₀) ≤_P (x₁, y₁) ⇔ x₀ ≤ x₁, y₀ ≤ y₁.
 1 point
 - a) Since $e^{2x} > 1$ if x > 0 and $e^{2x} < 1$ if x < 0, we get that $xe^{2x} > x$ if $x \neq 0$.

Hence, the only bounded set determined by the above functions is contained in the first quadrant. Its graph is:

Obviously,

$$maximum(A) = maximals(A) = \{(2, 2e^4)\}$$
$$minimum(A) = minimals(A)\} = \{(0, 0)\}$$

b) The area of A is:

$$\int_{0}^{2} (xe^{2x} - x)dx$$

In order to solve this integral, we first find the primitive of xe^{2x} , by parts:

$$\int xe^{2x} = x\frac{e^{2x}}{2} - \int \frac{e^{2x}}{2} \\ = x\frac{e^{2x}}{2} - \frac{e^{2x}}{4}$$

It follows that total area is

$$\int_{0}^{2} (xe^{2x} - x)dx = \left[x\frac{e^{2x}}{2} - \frac{e^{2x}}{4} - \frac{x^{2}}{2}\right]_{0}^{2}$$
$$= 2\frac{e^{4}}{2} - \frac{e^{4}}{4} - \frac{2^{2}}{2} + \frac{1}{4}$$
$$= \frac{3e^{4}}{4} - \frac{7}{4}$$

6. Given function

$$f(x) = \frac{\ln(1+x)}{1+x},$$

- (a) Find the primitive F(x) of f(x) such that F(0) = 3. Find the intervals at which F is increasing, decreasing, and find its minima and maxima on the interval (-1, 1]
- (b) Find the Taylor polynomial of second degree of F at a = 0, and use it to approximate the value of F(0, 1).

Hint: for part b) you might not need to find F(x).

- 1 point
- a) The primitive is immediate: F(x) = ¹/₂ ln²(1 + x) + C. Since we should have F(0) = 3, it follows that F(x) = ¹/₂ ln²(1 + x) + 3 Hence we have:
 i) F(x) is decreasing on (-1,0), since at that interval F'(x) = f(x) < 0.
 ii) F(x) is increasing on (0,1], since on that interval F'(x) = f(x) > 0. It follows that F(x) reaches a global minimum at x = 0. (where in fact F'(x) = 0).

On the other hand, F(x) does not have a maximum at x = -1, where it is not defined (and is asymptotic there). It reaches a local maximum at x = 1.

b) Taylor's second degree polynomial for F at a = 0 is:

$$P(x) = F(0) + F'(0)x + \frac{1}{2}F''(0)x^2$$

He have

$$F''(x) = f'(x) = \frac{1 - \ln(1 + x)}{(1 + x)^2}$$

Since F(0) = 3, F'(0) = f(0) = 0, and F''(0) = 1, we have that

$$P(x) = 3 + \frac{1}{2}x^2.$$

Hence $F(0,1) \approx P(0,1) = 3 + \frac{1}{2}(0,01) = 3,005$