Universidad Carlos III de Madrid

Question	1	2	3	4	5	6	total
Grade							

Economics Department		Final Exam, Mathematics I	June 28, 2010
		Total time length: 2 hours.	
LAST NAMES:		FIRST NAME:	
DNI:	Title:	Group:	

1. Let g(x) = |x - 1| - 1. We ask:

- a) Find the domain, the image (range) and the intervals at which g is increasing/decreasing.
- b) Let h be defined the same as g, but restricted to the interval $(-\infty, 1]$.

Find the inverse of h, as well as the domain and image of that inverse function.

Hint: Consider first the function f(x) = |x|. Starting from it, represent g(x), h(x) and $h^{-1}(x)$. 1 point

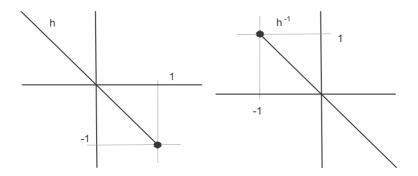
a) Function g(x) can be difined by sections as:

$$g(x) = \begin{cases} -(x-1) - 1 = -x & if \ x \le 1\\ (x-1) - 1 = x - 2 & if \ x \ge 1 \end{cases}$$

It follows that the domain is the real lilne, is decreasing in the interval $(-\infty, 1]$ and increasing in the interval $[1, \infty)$. Since g(1) = -1 and has limit ∞ (resp. $-\infty$) at ∞ (resp. $-\infty$), its range is the interval $[-1, \infty)$.

b) Since $g: (-\infty, 1] \to [-1, \infty)$ is onto, we infer that $g^{-1}(x) = -x$, its domain is $[-1, \infty)$ and its image is $(-\infty, 1]$.

The graphs of g and g^{-1} are:



1

2. Let a be a real number, and consider the following function defined by sections:

$$f(x) = \begin{cases} \frac{x}{1+x^2} & \text{if } x < 0\\ a & \text{if } x = 0\\ \ln(x^2+1) & \text{if } x > 0 \end{cases}$$

- a) Analyze, according to the values of a, the derivability of f(x) at x = 0.
- b) Analyze the existence of asymptotes of f(x).
 - 1 point
- a) First of all, let us see if the function is continuous at x = 0. Notice that

 $\lim_{x \to 0^-} f(x) = 0, \ f(0) = a, \ \lim_{x \to 0^+} f(x) = 0, \text{ so that } f \text{ is continuous at } x = 0 \text{ when } a = 0.$ Assuming now that f(x) is continuous at $x = 0, \ f(x)$ is derivable at x = 0 when $\lim_{x \to 0^{-}} f'(x) = \lim_{x \to 0^{+}} f'(x). \text{ Since}$ $\lim_{x \to 0^{-}} f'(x) = \lim_{x \to 0^{-}} \frac{1 + x^2 - 2x^2}{(1 + x^2)^2} = 1; \text{ and}$ $\lim_{x \to 0^{+}} f'(x) = \lim_{x \to 0^{+}} \frac{2x}{x^2 + 1} = 0;$ we conclude that there is no *a* for which *f* is derivable at *x* = 0.

b) Since the function is continuous everywhere, it does not have a vertical asymptote.

Regarding possible asymptotes at $-\infty$, since $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x}{1+x^2} = 0$, f(x) has a horizontal asymptote (hence not oblique) of y = 0 at $-\infty$. Regarding possible asymptotes at ∞ , since $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \ln(x^2 + 1) = \infty; \text{ and}$ $\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{\ln(x^2 + 1)}{x} = \frac{\infty}{\infty} = (L'Hopital) = \lim_{x \to \infty} \frac{2x}{x^2 + 1} = 0,$ f(x) has no horizontal or oblique asymptote at ∞ .

- 3. Let $f(x) = 2ae^x e^{2ax}$, for $0 \neq a \neq \frac{1}{2}$. We ask:
 - a) Find the Taylor polynomial of degree 2 at x₀ = 0.
 b) Determine the values of a for which the function f reaches a local maximum or minimum at the point x₀ = 0.
 - 1 point
 - a) We have that $f(x) = 2ae^x e^{2ax}$, f(0) = 2a 1; $f'(x) = 2ae^x - 2ae^{2ax}$, f'(0) = 0and $f''(x) = 2ae^{ax} - 4a^2e^{2ax}$, $f''(0) = 2a - 4a^2$. It follows that the Taylor polynomial of degree 2 at $x_0 = 0$ is $P_2(x) = \frac{1}{2}(2a - 4a^2)x^2 + 2a - 1$.
 - b) f reaches a local minimum at $x_0 = 0$ when a(1-2a) > 0or, equivalently, when $0 < a < \frac{1}{2}$. By the same token, f reaches a local maximum at $x_0 = 0$ when a(1-2a) < 0 or, equivalently, when a < 0 or when $a > \frac{1}{2}$.

- 4. Let $C(x) = C_0 + x + 0,01x^2$ and $p(x) = a \frac{x}{50}$ be the cost and demand functions, respectively, of a monopolistic firm. We ask:
 - a) Find a and C_0 for which the medium cost is minimum at production x = 100.
 - b) Find a and C_0 for which benefits are maximum at production x = 100.
 - 1 point
 - a) The medium cost function is $\frac{C(x)}{x} = \frac{C_o}{x} + 1 + 0'01x$. In order to get that x = 100 minimizes that function, it should be the case that $\left(\frac{C(x)}{x}\right)' = \frac{-C_o}{x^2} + 0'01 = 0$. Equivalently, $x^2 = \frac{C_0}{0'01} = 100C_0$, or $C_0 = 100$, for any value of a. In addition, x = 100 is a point of global minimum, since C(x)/x is convex
 - b) The benefits function is $B(x) = p(x) \cdot x C(x) = (a \frac{x}{50})x (C_0 + x + 0, 01x^2)$. In order to get maximum benefits, we need

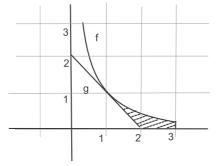
B'(x) = a - 0'04x - 1 - 0,02x = 0. So, it is required that a = 1 + 0'06x. Since x = 100 should be the solution, we need a = 7, for any value of C_0 . In addition, x = 100 is a point of global maximum, since B(x) is concave.

- 5. Consider the function $f(x) = \frac{1}{x}$, and g(x), the tangent line to the graph of f at the point x = 1. We ask:
 - a) Draw the closed recint A limited by the functions f, g, the horizontal axis, and the line x = 3.
 - Find the maximals and minimals, and the maximum and minimum of A, if they exist.
 - b) Find the area of A.
 - 1 point
 - a) The graph of $f(x) = \frac{1}{x}$ is an equilateral hiperbola. The tangent lline at x = 1 is the function g(x) = 2 x.

Such tangent line is below the hiperbola (since the function is convex)

and cuts the horizontal axis at x = 2.

Hence, re recint can be drawn like this:



Obvioulsly, $\max(A), \min(A)$ do not exist , since $\max(A) = \{(x, y) : y = \frac{1}{x}, 1 \le x \le 3\}$ minimals(A) = $\{(x, y) : y = 2 - x, 1 \le x \le 2\}$.

b) The set A can be understood as the union of two other sets:

1) set A_1 bounded by functions f, g and the line x = 2.

The value of its area is:

$$\int_{1} \left(\frac{1}{x} - (2 - x)\right) dx = \left[\ln x - 2x + \frac{1}{2}x^2\right]_{1}^{2} = \ln 2 - 4 + 2 - (0 - 2 + \frac{1}{2}) = \ln 2 - \frac{1}{2}$$

2) set A_2 bounded by functions f, the horizontal axis and the lines x = 2, x = 3. The value of its area is:

$$\int \frac{1}{x} dx = [\ln x]_2^3 = \ln 3 - \ln 2$$

 \tilde{H} ence, the area os A is:

 $area(A) = \ln 2 - \frac{1}{2} + \ln 3 - \ln 2 = \ln 3 - \frac{1}{2}$

- 6. Let $f(x) = a \ln(ax)$, where a > 0. We ask:
 - a) Find the indefinite integral $F(x) = \int f(x) dx$.
 - b) Determine the value of a so that the tangent line to f(x) at x = 2 goes through the point (0,0). Remark: you can solve b) without solving a).
 1 point
 - a) Using the fact that $\ln(ax) = \ln a + \ln x$, we have that $\int a \ln(ax) dx = (a \ln a)x + a \int \ln x dx = (a \ln a)x + a(x \ln x - x) + C = ax \ln(a + x) - ax + C$
 - b) Since $f'(x) = \frac{a}{x}$, $f'(2) = \frac{a}{2}$, we conclude that the tangent line to f at x = 2 is: $y - a \ln(2a) = \frac{a}{2}(x - 2)$. Since that line goes through the origin, it satisfies: $-a \ln(2a) = \frac{a}{2}(-2) \Longrightarrow \ln(2a) = 1 \Longrightarrow a = \frac{e}{2}$. Hence, the equation of the tangent line is: $y - \frac{e}{2} \ln(e) = \frac{e}{4}(x - 2)$, or $y - \frac{e}{2} = \frac{e}{4}(x - 2)$.