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1. Consider the function f(x) =
ln(1 + 2x)

1 + 2x
. You are asked to (10 points)

(a) Draw the graph of the function, obtaining firstly its domain, the intervals where f increases and

decreases, its asymptotes, and image.

(b) Consider the functions f1(x) := f(x) defined just in the interval where f is increasing, and f2(x) :=

f(x) defined just in the interval where f is decreasing. Find the domains and the images of the

functions f−11 and f−12 , and draw their graphs.

Suggestion: Do not try to compute the analytical expressions of f−11 and f−12 .

(a) The domain of f is D = {x ∈ R : 1 + 2x > 0} = (− 1
2 ,∞). The first derivative is

f ′(x) =
2

1+2x (1 + 2x)− 2 ln(1 + 2x)

(1 + 2x)2
=

2(1− ln(1 + 2x))

(1 + 2x)2

One has f ′(x) = 0 holds iff ln(1 + 2x) = 1, that is, 1 + 2x = e. So, the unique critical point is x∗ =
e− 1

2
.

f(x∗) =
ln(1 + 2x∗)

1 + 2x∗
=

ln(1 + e− 1)

1 + e− 1
=

1

e

• f ′(x) ≥ 0⇐⇒ 1 ≥ ln(1 + 2x)⇐⇒ e ≥ 1 + 2x⇐⇒ x∗ ≥ x. So, f is increasing in (− 1
2 ,

e−1
2 ]

• f ′(x) ≤ 0⇐⇒ 1 ≤ ln(1 + 2x)⇐⇒ e ≤ 1 + 2x⇐⇒ x∗ ≤ x. So, f is decreasing in [ e−12 ,+∞)

Consequently, f has a local maximum in the point (x∗, f(x∗)) = ( e−1
2 , 1

e ). In fact, it is global.

Since f is continuous on its domain, we just study the asymptotes at − 1
2

+
and +∞.

lim
x→− 1

2
+
f(x) =

−∞
0+

= −∞; lim
x→+∞

f(x) = lim
x→+∞

ln(1 + 2x)

1 + 2x
=
∞
∞

L’Hôpital
= lim

x→+∞

2
1+2x

2
= 0;

Hence, f has a vertical asymptote in x = − 1
2 (on the right) and an horizontal asymptote in y = 0 (in +∞).

There are no oblique asymptotes.

Then, the image of the function is (−∞, 1
e ] and its graph is as follows

f

(e-1)/2

1/e

-1/2



(b) By definition f1(x) = f(x) for all x ∈ (− 1
2 ,

e−1
2 ] and it is a bijective and increasing function. Hence,

f1 :

(
−1

2
,
e− 1

2

]
−→

(
−∞,

1

e

]
and so f−11 :

(
−∞,

1

e

]
−→

(
−1

2
,
e− 1

2

]
The function f−11 is also bijective and increasing, and its graph is

-1/2

(e-1)/2

1/e

f -1

By definition f2(x) = f(x) for all x ∈ [ e−12 ,+∞) and it is a bijective and decreasing function. Hence,

f2 :

[
e− 1

2
,+∞

)
−→

(
0,

1

e

]
and so f−12 :

(
0,

1

e

]
−→

[
e− 1

2
,+∞

)
The function f−12 is also bijective and decreasing, and its graph is

1/e

(e-1)/2

f -1



2. Given the function y = f(x) implicitly defined by the equation y + ex+y = 0 in a neighborhood

of the point x = 1, y = −1, you are asked to (10 points)

(a) Find the second-order Taylor polynomial of f(x) around a = 1. Use it to get an approximation of

f(0, 9).

(b) Find the equation of the tangent line to f at the point x = 1. Draw a sketch of the graph of f around

the point x = 1.

Hint: Use the fact that f ′(1) < 0 and f ′′(1) < 0.

(a) Firstly, we compute the first and second derivatives of the function

f(x) + ex+f(x) = 0

f ′(x) + (1 + f ′(x))ex+f(x) = 0

f ′′(x) + f ′′(x)ex+f(x) + (1 + f ′(x))2ex+f(x) = 0

Next we substitute x = 1, f(1) = −1,

f ′(1) + (1 + f ′(1))e0 = 0

f ′′(1) + f ′′(1)e0 + (1 + f ′(1))2e0 = 0

Consequently, f ′(1) = − 1
2 and f ′′(1) = − 1

8 .

So, the second-order Taylor polynomial around a = 1 is

P (x) = f(1) + f ′(1)(x− 1) +
f ′′(1)

2!
(x− 1)2 = −1− 1

2
(x− 1)− 1

16
(x− 1)2

f(0, 9) ≈ P (0, 9) = −1 +
1

2
(0, 1)− 1

16
(0, 1)2 =

−1600 + 80− 1

1600
=
−1521

1600
.

(b) Finally, the equation of the tangent line to f at the point x = 1 is

y = −1− 1

2
(x− 1) =

−x− 1

2

Since f ′′(1) < 0, the function f is concave in a neighborhood of x = 1. Hence, the graph of f lies below

the given tangent line around the point x = 1.

f

1

-1



3. Let C(x) = C0 + 40x + 0, 04x2 be the cost function of a monopolistic firm, where C0 > 0

represents the fixed costs and x ≥ 0 is the output. The inverse demand function is given by

p(x) = 60− 0, 06x. You are asked to (10 points)

(a) Find the price p∗ that maximizes the benefit of the firm. Justify why it gives the maximum benefit.

(b) Find the value of C0 such that the level of output that maximizes the benefit coincides with the level

of output that minimizes the average costs. In such a case, which is the benefit? And the average

cost?

(a) The benefit function is

B(x) = P (x)x− C(x) = 60x− 0, 06x2 −
(
C0 + 40x + 0, 04x2

)
= −0, 1x2 + 20x− C0.

One has

B′(x) = −0, 2x + 20 and B′′(x) = −0, 2 < 0

B is a concave function and it has a unique critical point in x∗ = 100, so that point is a global maximizer.

The price associated to this level of output is p∗ = p(x∗) = p(100) = 60− 0, 06 · 100 = 60− 6 = 54.

(b) The average cost function is

CM(x) =
C(x)

x
=

C0

x
+ 40 + 0, 04x

One has

CM ′(x) =
−C0

x2
+ 0, 04 and CM ′′(x) =

2C0

x3
> 0

CM is a convex function and it has a unique critical point in x̃ =
√

C0

0,04 , so that point is a global minimizer.

By hypothesis, the level of output that maximizes the benefit coincides with the level of output that

minimizes the average costs, that is, x∗ = x̃ and so√
C0

0, 04
= 100 ⇒ C0 = 0, 04 · 1002 = 400

For that value of C0, the maximum benefit of the firm is

B(x∗) = B(100) = −0, 1 · 1002 + 20 · 100− 400 = 600,

whereas the minimum average cost is

CM(x̃) = 4 + 40 + 4 = 48



4. Let f : [0, 3]→ R be a continuous function in [0, 3] and twice derivable in (0, 3) such that

f(0) = 1, f(1) = 2, f(2) = 4, f(3) = 8.

You are asked to (10 points)

(a) Prove that there exist c1 ∈ (0, 1) such that f ′(c1) = 1 and c2 ∈ (2, 3) such that f ′(c2) = 4.

(b) Prove that there exists c3 ∈ (0, 3) such that 1 < f ′′(c3) < 3.

Hint: Apply the Lagrange’s Theorem to the appropriate function in the appropriate interval, and find

a lower bound and an upper bound for c2 − c1.

(a) By applying the Lagrange Theorem to f in [0, 1], we get the existence of c1 ∈ (0, 1) such that

f ′(c1) =
f(1)− f(0)

1− 0
= 1.

Analogously, by applying the Lagrange Theorem to f in [2, 3], we get the existence of c2 ∈ (2, 3) such that

f ′(c2) =
f(3)− f(2)

3− 2
= 4.

(b) By applying the Lagrange Theorem to f ′ in [c1, c2] ⊂ [0, 3], we get the existence of c3 ∈ (c1, c2) ⊂
(0, 3) such that

f ′′(c3) =
f ′(c2)− f ′(c1)

c2 − c1
=

3

c2 − c1
.

Since c1 ∈ (0, 1) and c2 ∈ (2, 3), one has −c1 ∈ (−1, 0) and so 1 < c2 − c1 < 3. Hence,

1 >
1

c2 − c1
>

1

3
and so 3 >

3

c2 − c1
> 1.

Consequently, 1 < f ′′(c3) < 3.



5. Consider the set A = {(x, y) ∈ R2 : 0 ≤ y ≤ f(x)} where f is an increasing function and convex

in the interval [2, 4] and it holds f(2) = 5, f ′(2) = 3, f(4) = 12. You are asked to (10 points)

(a) Draw the set A and find, if they exist, the maximals, minimals, maximum and minimum points of A.

Recall that the Pareto order is defined by (x0, y0) ≤P (x1, y1)⇔ x0 ≤ x1, y0 ≤ y1.

(b) Find the best approximations (one from below and the other from above) of the area of the set A.

Hint: Draw the graph of the function, the tangent line to f in (2, f(2)), and the straight line that

crosses points (2, f(2)) and (4, f(4)).

Remark: the difference between both approximations is 1 unit area.

(a) Graph is shown in part (b). Since the function f is positive and increasing in [2, 4], one has

maximum(A) = maximals(A) = {(4, f(4))}

minimum(A) = minimals(A) = {(2, 0))}

(b) Due to the convexity, the graph of the function lies above the tangent line to f in (2, f(2)), which is

y − 5 = 3(x− 2) ⇒ y = 3x− 1

On the other hand, also due to the convexity, the graph of the function lies below the straight line that

crosses points (2, f(2)) and (4, f(4)), which is y = 3.5x− 2.

Hence, since f is positive and increasing, if

F := area(A) =

∫ 4

2

f(x)dx,

one has

F ≥ Fb :=

∫ 4

2

(3x− 1)dx = 3
x2

2
− x|42 = (24− 4)− (6− 2) = 16

F ≤ Fa :=

∫ 4

2

(3.5x− 2)dx = 3.5
x2

2
− 2x|42 = (28− 8)− (7− 4) = 17

Another way to get these estimations is the following one. Observe that Fb is the area of the rectangle

with width 2 (the length of the interval [2, 4]) and height 5 (f(2)) plus the area of the right triangle which

is above the previous rectangle and has the same width, 2, and height 6 (the distance from (4, 5) to (4, 11)).

Hence,

Fb = 2 · 5 +
2 · 6

2
= 10 + 6 = 16

On the other hand, Fa is the area of the rectangle with width 2 (the length of the interval [2, 4]) and

height 5 (f(2)) plus the area of the right triangle which is above the previous rectangle and has the same

width, 2, and height 7 (the distance from (4, 5) to (4, 12)). Hence,

Fa = 2 · 5 +
2 · 7

2
= 10 + 7 = 17
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6. Consider the function

F (x) =

∫ x

3

2t− 7

t2 − t− 2
dt

defined in [3,+∞). You are asked to (10 points)

(a) Find the local extreme points of F and classify them.

(b) Find the value of F (4) and justify whether it is positive or negative.

Remark: Statements (a) and (b) are independent each other.

(a) By applying the Fundamental Theorem of Integral Calculus, one has F ′(x) =
2x− 7

x2 − x− 2
.

Hence, F ′(x) = 0 if and only if 2x− 7 = 0 and so, x∗ =
7

2
is the unique critical point.

Observe that the points −1 and 2 where F ′ is not defined and so F would not be differentiable at those

points, are not critical points since we are assuming that F is just defined at [3,+∞).

Now, we study the second derivative of F at x∗ to classify that point.

F ′′(x) =
2(x2 − x− 2)− (2x− 7)(2x− 1)

(x2 − x− 2)2
=
−2x2 + 14x− 11

(x2 − x− 2)2

F ′′(x∗) =
−2(49/4) + 14(7/2)− 11

((49/4)− (7/2)− 2)2
=

(−49 + 98− 22)/2

((49− 14− 22)/4)2
=

27/2

(27/4)2
=

8

27
> 0

Hence, F attains a local minimum in x∗ =
7

2
.

(b) Since t2 − t− 2 = (t + 1)(t− 2), then

2t− 7

t2 − t− 2
=

A

t + 1
+

B

t− 2
⇒ 2t− 7 = A(t− 2) + B(t + 1).

If we susbtitute t = 2 then we get −3 = 3B and so B = −1. Analogously, if we substitute t = −1 we get

−9 = −3A and so A = 3. Hence,

F (4) =

∫ 4

3

2t− 7

t2 − t− 2
dt =

∫ 4

3

3

t− 2
dt +

∫ 4

3

−1

t + 1
dt = [3 ln(t + 1)− ln(t− 2)]43 =

= (3 ln(5)− ln(2))− (3 ln(4)− ln(1)) = 3 (ln(5)− ln(4))− ln(2) = 3 ln

(
5

4

)
− ln(2) =

= ln

(
5

4

)3

− ln(2) = ln

(
125

64

)
− ln(2) = ln

(
125

128

)
< 0

since 125
128 < 1.


