				Un	ivers	idad	Carlos I	II de Madrid		
Question	1	2	3	4	5	6	Total			
Grade										
Economics Department				Final Exam, Mathematics I					January 14, 2011	
					Tot	al leng	gth: 2 ho	urs.		
SURNA										
DNI: I				Degree:				Group:	Group:	

1. The function f is defined by $f(x) = \begin{cases} 2 - 4(x-4)^2 & \text{if } 3 \le x \le 4\\ 2 + 4(x-4)^2 & \text{if } 4 \le x \le 5 \end{cases}$.

- a) Find the range of f and find the inverse function f^{-1}
- b) Sketch the graph of the inverse function f⁻¹. Find its domain and its range.
 Hint: sketch the graph of the function f and observe if it is an increasing or decreasing function.
 1 point.
- a) The function f is continuous and strictly increasing on its domain. Finding the values of f(3) = -2 and f(5) = 6 we know that the range of the function is [-2, 6].
 In order to find the increase function f⁻¹ further we consider f defined on the subdemain [2, 4].

In order to find the inverse function f^{-1} . firstly, we consider f defined on the subdomain [3, 4], whose range is the interval [-2, 2].

$$y = 2 - 4(x - 4)^2 \iff (x - 4)^2 = \frac{2 - y}{4} \iff x - 4 = -\sqrt{\frac{2 - y}{4}} \iff x = 4 - \frac{\sqrt{2 - y}}{2};$$

So, $f^{-1}(x) = 4 - \frac{\sqrt{2 - x}}{2}$, whenever $x \in [-2, 2]$.
Secondly, we consider f defined on the subdomain $[4, 5]$, whose range is the interval $[2, 6]$
 $y = 2 + 4(x - 4)^2 \iff (x - 4)^2 = \frac{y - 2}{4} \iff x - 4 = \sqrt{\frac{y - 2}{4}} \iff x = 4 + \frac{\sqrt{y - 2}}{2};$
So, $f^{-1}(x) = 4 + \frac{\sqrt{x - 2}}{2}$, whenever $x \in [2, 6]$.
Thus we have: $f^{-1}(x) = \begin{cases} 4 - \frac{\sqrt{2 - x}}{2} & si - 2 \le x \le 2\\ 4 + \frac{\sqrt{x - 2}}{2} & si - 2 \le x \le 6 \end{cases}$

b) To sketch the graph of the inverse function f^{-1} , it is useful to bear in mind that as f is strictly increasing it will also be its inverse function.

We also know that for the inverse function f^{-1} , the domain is [-2, 6], the range is [3, 5] and f(2) = 4. And furthermore, since f is concave on the interval [3, 4] and convex on the interval [4, 5], thus f^{-1} is convex on [-2, 2] and concave on [2, 6].

Thus, the graph of f^{-1} will approximatly be:

2. The function f is defined by

$$f(x) = \begin{cases} \frac{x^3}{1+x^2}, & \text{if } x < 0\\ a, & \text{if } x = 0\\ \frac{\ln(x^2+1)}{x}, & \text{if } x > 0 \end{cases}$$

where $a \in \mathbb{R}$, is a real number.

- a) Find the value of a giving your justification, if there is any, such that the function f is continuous and/or differentiable at x = 0.
- b) Find the vertical, horizontal and oblique asymptotes of the function f for each value of a. 1 point.
- a) Firstly, in order to study whether the function is continuous at the point x = 0, we calculate the sided limits of f(x) at x = 0.

$$\begin{split} &\lim_{x \to 0^-} f(x) = 0, \ f(0) = a, \ \lim_{x \to 0^+} f(x) = \frac{0}{0} = (L'Hopital) = \lim_{x \to 0^+} \frac{2x}{x^2 + 1} = 0; \\ &\text{In this case, } f \text{ is continuous at } x = 0 \text{ when } a = 0. \\ &\text{Now, if we suppose that } f(x) \text{ is continuous at } x = 0, \ f(x) \text{ is differentiable at } x = 0 \text{ when} \\ &\lim_{x \to 0^-} f'(x) = \lim_{x \to 0^+} f'(x). \text{ But:} \\ &\lim_{x \to 0^-} f'(x) = \lim_{x \to 0^+} \frac{3x^2(1 + x^2) - x^3 2x}{(1 + x^2)^2} = 0. \\ &\text{and, } \lim_{x \to 0^+} f'(x) = \lim_{x \to 0^+} \frac{[2x/(x^2 + 1)]x - \ln(x^2 + 1)}{x^2} = \lim_{x \to 0^+} \frac{[2x/(x^2 + 1)]x}{x^2} - \lim_{x \to 0^+} \frac{\ln(x^2 + 1)}{x^2}; \\ &\text{Calculating the value of both limits apart:} \\ &\lim_{x \to 0^+} \frac{[2x/(x^2 + 1)]x}{x^2} = \lim_{x \to 0^+} \frac{2}{x^2 + 1} = 2. \text{ And the other one,} \\ &\lim_{x \to 0^+} \frac{\ln(x^2 + 1)}{x^2} = \frac{0}{0} = (L'Hopital) = \lim_{x \to 0^+} \frac{2x/(x^2 + 1)}{2x} = 1. \\ &\text{We finally obtain } \lim_{x \to 0^+} f'(x) = 1. \\ &\text{Thus, we can assert that } f(x), \text{ in no case is differentiable at } x = 0. \\ &\text{Obviously, vertical asymptotes do not exist. To find asymptotes at infinity:} \\ &\text{Infinity:} \\ &$$

b) Obviously, vertical asymptotes do not exist. To find asymptotes at

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{x^3}{(1+x^2)x} = 1,$$

$$\lim_{x \to -\infty} f(x) - x = \lim_{x \to -\infty} \frac{x^3}{1+x^2} - \frac{x(1+x^2)}{1+x^2} = \lim_{x \to -\infty} \frac{-x}{1+x^2} = 0$$
Then f has an oblique asymptote $y = x$ at $-\infty$.

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\ln(x^2+1)}{x} = \frac{\infty}{\infty} = \lim_{x \to \infty} \frac{2x}{x^2+1} = 0$$
Thus the function has a horizontal asymptote $y = 0$ at ∞ .

- 3. Consider the equation $x + e^{4x} = b$.
 - a) Prove that there is always only one solution of the given equation.
 - b) Find out, when b = 0, the solution of the equation with an absolute error less than 0.25. Hint: the value of e falls in between 2 and 3. 1 point.
 - a) The function $f(x) = x + e^{4x}$ is strictly increasing on \mathbb{R} , from its first derivative $f'(x) = 1 + 4e^{4x} > 0$. Therefore, if there is any solution, there is only one.

In order to prove that there is a solution of the equation we should notice that the function is continuous on its domain and from

 $\lim_{x \to -\infty} f(x) = -\infty, \ \lim_{x \to \infty} f(x) = \infty, \ (\text{range } (f) = \mathbb{R})$ we can state that the solution always exits for each $b \in \mathbb{R}$ and it is unique.

b) First, we try with f(0) = 1 > 0. So since the function is strictly increasing, we know the root is to the left of (i.e. smaller than) x = 0.

Since $f(-1) = -1 + e^{-4} = -1 + \frac{1}{e^4} < -1 + \frac{1}{16} < 0$, using Bolzano's Theorem the root is in the interval (-1, 0).

Finally, if we try the midpoint of the above interval, since $f(-\frac{1}{2}) = -\frac{1}{2} + \frac{1}{e^2} < -\frac{1}{2} + \frac{1}{4} < 0$. then we know for the same reason as above, the root is in the interval $(-\frac{1}{2}, 0)$, and in this case we can take the midpoint $x = -\frac{1}{4}$ as an approximate value of the root with an absolute error of less than 0.25.

Blank page Questions 1-2-3

- 4. The function f is defined by $f(x) = \begin{cases} x^2 1 & \text{if } x < 0 \\ 1 2x & \text{if } 0 \le x \end{cases}$, and we consider the function $f: [a, b] \to \mathbb{R}$, where a < b are real numbers.

 - a) Write down Weierstrass' Theorem and find the values of a and b such that the hypothesis (or initial condition) is true in the theorem.
 - b) Find the values of a and b such that the hypothesis is NOT satisfied but the thesis (or conclusion) is.

Hint: Draw the graph of the function.

1 point.

- a) The hypothesis (conditions) is satisfied when the function is continuous. Therefore this happens when $0 \le a$ or when $b \le 0$.
- b) On the one hand the hypothesis is not satisfied when the function f is discontinuous, this is the case when $a < 0 \leq b$.

On the other hand, for each value of a and b the function always attains its global maximum.

In order to determine the solution, we just need to consider the case that f is discontinuous and attains its global minimum. Since the function is only left handed discontinuous at x = 0 and since $\lim_{x \to 0} f(x) = -1 < f(0)$, and we notice that $f(x) \le -1 \iff x \ge 1$

then, f(x) is discontinuous and satisfies the thesis when $a < 0 < 1 \le b$. Look at the graph of f in order to fully understand the situation.

- 5. Let $A = \{(x, y) \in \mathbb{R}^2 : x^2 2x + 1 \le y \le -x^2 + 2x + 1\}$ be a set of points.
 - a) Draw the set A and obtain the maximum, the minimum, the maximal elements and minimal elements of the set A if they exist.
 - b) Calculate the area of the region given by the set A. Hint: The Pareto ordering is: $(x_0, y_0) \leq_P (x_1, y_1) \iff x_0 \leq x_1, y_0 \leq y_1$. **1 point.**
 - a) $f(x) = x^2 2x + 1$ describes a convex parabola whose vertex is the point (1, 0), since f'(1) = 0, f(1) = 0, f''(1) > 0. $g(x) = -x^2 + 2x + 1$ describes a concave parabola whose vertex is the point (1, 2), since g'(1) = 0, g(1) = 2, g''(1) < 0. To find the points (x, y) of intersection on both parabolas we solve the equation: $x^2 - 2x + 1 = -x^2 + 2x + 1 \iff 2x^2 = 4x \iff x = 0, x = 2$. to obtain: (0, 1), (2, 1).

Thus the region bound by set A is:

It is certain that there are neither $\max(A)$ nor $\min(A)$, since maximal points of $(A) = \{(x, y) : y = -x^2 + 2x + 1, 1 \le x \le 2\}$ minimal points of $(A) = \{(x, y) : y = x^2 - 2x + 1, 0 \le x \le 1\}.$

b) The area of the region is:

$$\int_{0}^{2} [(-x^{2} + 2x + 1) - (x^{2} - 2x + 1)]dx = \int_{0}^{2} (-2x^{2} + 4x)dx = \left[\frac{-2x^{3}}{3} + \frac{4x^{2}}{2}\right]_{0}^{2} = \frac{-16}{3} + 8 = \frac{8}{3}$$
 area units.

6. Given the function $F(x) = \int_{-\infty}^{x} t^3 e^{-t^2} dt$, defined at $x \in [-2, 2]$.

- a) Find the intervals in which F(x) is increasing/decreasing. Find the local and/or global maxima and minima of F(x).
- b) Find the intervals in which F(x) is convex/concave. Locate any inflection points of F(x). Notice: It is neither necessary nor helpful to find the primitive function of $f(x) = x^3 e^{-x^2}$. **1 point.**
- a) Referring to the Fundamental Theorem of Calculus we know that $F'(x) = x^3 e^{-x^2}$. Therefore, the following is satisfied:

 $F'(x) < 0 \iff x < 0; F'(x) > 0 \iff x > 0.$

So we know that F(x) is strictly decreasing on the interval (-2,0) and strictly increasing on the interval (0,2).

Firstly we can conclude that F(x) attains its global (and local) minimum at x = 0.

And secondly, to find the maximum of the function F(x), since $f(x) = x^3 e^{-x^2}$ is an odd function, then

$$\int_{-2}^{0} t^3 e^{-t^2} dt = -\int_{0}^{2} t^3 e^{-t^2} dt \text{ and we know that } F(-2) = 0 = F(2).$$

We can conclude that F(x) attains its global maximum at the points x = -2, x = 2. b) Since $F''(x) = f'(x) = x^2(-2x^2 + 3)e^{-x^2}$, then:

$$F''(x) = 0 \iff x = 0, x = \pm \sqrt{\frac{3}{2}};$$
 Furthermore, since

 $F''(x) < 0 \iff x \in (-2, -\sqrt{\frac{3}{2}}) \cup (\sqrt{\frac{3}{2}}, 2)$; (these are two different open intervals where the function is concave) and

 $F''(x) > 0 \iff x \in (-\sqrt{\frac{3}{2}}, \sqrt{\frac{3}{2}});$ (this is an open interval where the function is convex).

We can thus state that the function has two inflection points at $x = \pm \sqrt{\frac{3}{2}}$. A sketch of the graph of F is:

Blank page Questions 4-5-6