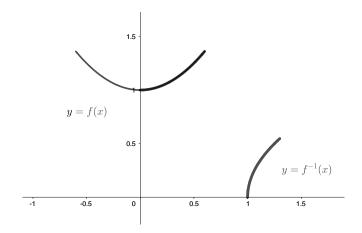

Universid	ad Carlos III de Madrid	Exercise Points	1	2	3	4	5	Total	
Department of Economics		Mathematics I Final Exam January 11th 2023							
TACTIN		Exam time:	2 ho	ırs.					
LAST N		FIRST NAME: GROUP:							
ID:	DEGREE:								
(1) Cc	nsider the function $f(x) = (x^2 - 4)^{\frac{2}{3}}$, defined in the interval $[0, \infty)$. Then: find the intervals where $f(x)$ increases and decreases, its global maximum and minimum, and range								
(a									
6-	(or image) of $f(x)$.						_	_	
(b	(b) find the intervals where $f(x)$ is convex and concave, and its points of inflection. Draw the grap								
(of the function. $(1 + 1) = (1 + 1)$								
(c	c) consider $f_b(x)$ to be the function $f(x)$ defined on the interval $[0, b]$, where $b \ge 2$.								
	Find the global maximum (and the global maximizers) of $f_b(x)$.								
_	0.4 points part a); 0.4 points part b); 0.2 points part c)								
	a) $f(x)$ is continuous on its domain, $[0, \infty)$. Since $y = x^{\frac{2}{3}}$ is derivable everywhere but at $x = 0$, $f(x)$								
a	is also derivable everywhere but when $x^2 - 4 = 0$ that is at $x = 2$								
	Since $f'(x) = \frac{2 \cdot 2x}{3(x^2 - 4)^{\frac{1}{3}}}$, the critical points are $x = 0$ and $x = 2$.								
	Since $f(x) = \frac{1}{3(x^2 - 4)^{\frac{1}{3}}}$, the critical points are $x = 0$ and $x = 2$.								
	$f'(1) < 0$, then $f'(x) < 0$ if $x \in (0, 2)$, so, $f(x)$ is decreasing on $[0, 2]$.								
	$f'(3) > 0$, then $f'(x) > 0$ if $x \in (2, \infty)$, so, $f(x)$ is increasing on $[2, \infty)$.								
	Obviously, $x = 2$ is the global minimizer of $f(x)$ since $f(2) = 0 < f(x)$ if $x \neq 2$.								
	Moreover, $f(x)$ has no global maximum, since $\lim_{x \to \infty} f(x) = \infty$.								
	Finally, it is deduced that the range of $f(x)$ is $[0, \infty)$.								
b) There exist $f''(x)$ for any $x \neq 2$. And since,								
	$f''(x) = \frac{4}{3} \frac{(x^2 - 4)^{\frac{1}{3}} - x \cdot (\frac{1}{3})(x^2 - 4)^{-\frac{2}{3}} \cdot 2x}{(x^2 - 4)^{\frac{2}{3}}} =$								
	$(x^2 - 4)$	$\frac{1}{3}$	1 0	()	21				
	$= \frac{4}{9} \cdot \frac{3(x^2 - 4) - 2x^2}{(x^2 - 4)^{\frac{4}{3}}} = \frac{4}{9} \frac{x^2}{(x^2 - 4)}$	nd denominate $\frac{2}{2}$ = 12	or by 3	$(x^2 - 4)$)3				
	$= = \frac{4}{9} \cdot \frac{5(x-4)-2x}{(x^2-4)^{\frac{4}{2}}} = \frac{4}{9} \frac{x}{(x^2-4)^{\frac{4}{2}}}$	$\frac{-12}{(4)^{\frac{4}{2}}}$							
	and the second order derivative								
	f''(1) < 0, then $f''(x) < 0$ if x	-				2].			
	f''(3) < 0, then $f''(x) < 0$ if a		. ,			-	1.		
	f''(4) > 0, then $f''(x) > 0$ if x								
	Therefore, it is deduced that $\sqrt{12} = 2\sqrt{3}$ is a point of inflection.								
						on $[0, 2]$	$\sqrt{3}$] eith	ner. since. th	e line
	Notice: $x = 2$ is not an inflection point and $f(x)$ is not concave on $[0, 2\sqrt{3}]$ either, since, the line segment that joints the points $(1, f(1))$ and $(3, f(3))$ is not underneath the graph of $f(x)$ at the								
	point $x = 2$.								
	The graph of f will have an a	ppearance app	roxima	tely, si	milar to	the on	e in the	figure at the	e end.
с) We know that $f(x)$ is decreas							0	
	Therefore, naming x^* to the u			-		,	atisfies:		
	$f(x^*) = f(0) = 4^{\frac{2}{3}}$, then:	•			× ′ .	,			
	if $b < x^* \Longrightarrow Max(f_b) = f(0)$	$=4^{\frac{2}{3}};$ maximi	$\operatorname{izer}(f_b$	$) = \{0\}$	·.				
	if $b = x^* \Longrightarrow Max(f_b) = f(0)$					$\{0,b\}.$			
	if $b > x^* \Longrightarrow Max(f_b) = f(b)$, <u> </u>					
						4 = 4 =	$\Rightarrow x^{*2}$	$= 8 \Longrightarrow x^* =$	$=2\sqrt{2}$
	What is the value of x^* ? Since $f(x^*) = (x^{*2}-4)^{\frac{2}{3}} = 4^{\frac{2}{3}} \Longrightarrow x^{*2}-4 = 4 \Longrightarrow x^{*2} = 8 \Longrightarrow x^* = 2\sqrt{2}$								


Look again at the draw of the graph!

- (2) Given the implicit function y = f(x), defined by the equation $4x^2 + 2y y^3 = 1$ in a neighbourhood of the point x = 0, y = 1, it is asked:
 - (a) find the tangent line and the second-order Taylor Polynomial of the function f at a = 0.
 - (b) sketch the graph of the function f near the point x = 0.
 - (c) consider $f_{\delta}(x)$ the implicit function defined in the interval $[0, \delta)$. Sketch the graph of its inverse function.

Using Taylor Polynomial, find the approximate formula of $f_{\delta}(x)$ inverse function. (*Hint for part (b) and (c):* use f''(0) > 0). **0.4 points part a); 0.2 points part b); 0.4 points part c).**

- a) First of all, we notice that the point (0, 1) is a solution of the equation. Secondly, we calculate the first-order derivative of the equation: $8x + 2y' - 3y^2y' = 0$ evaluating at x = 0, y(0) = 1 we obtain: y'(0) = f'(0) = 0. Then, the equation of the tangent line is: $y = P_1(x) = 1$. Analogously, we calculate the second-order derivative of the equation: $8 + 2y'' - 3y^2y'' - 6y(y')^2 = 0$ evaluating at x = 0, y(0) = 1, y'(0) = 0 we obtain: y''(0) = f''(0) = 8. Therefore, the second-order Taylor Polynomial is: $y = P_2(x) = 1 + 4x^2$.
- b) Using the second-order Taylor Polynomial, the approximate graph of the function f, near the point x = 0 will be as you can see in the figure underneath.
- c) The graph of $f_{\delta}(x)$ inverse function is simmetric with respect to the main diagonal (y = x), then it will be represented as you can see in the same figure aunderneath. Moreover, using second order Taylor Polynomial, we know that for $x \approx 0$: $f_{\delta}(x) \approx 1 + 4x^2$, so the inverse function of Taylor Polynomial, for values of $x \ge 0$, will be given by the equation: $1 + 4y^2 = x \Longrightarrow y^2 = (x - 1)/4 \Longrightarrow y = \frac{1}{2}\sqrt{x - 1}$ Then, $f_{\delta}^{-1}(x) \approx \frac{1}{2}\sqrt{x - 1}$, for $x \approx 1, x \ge 1$.

- (3) Let $C(x) = C_0 + 2x + x^2$ be the cost function and p(x) = a 5x the inverse demand function of a monopolistic firm, with $a, C_0 > 0, x \ge 0$. Then:
 - (a) calculate the value of the parameter a, knowing that the production level to maximize the profit is $x^* = 4$.
 - (b) calculate the value of the parameter C_0 , knowing that the production level to minimize the average cost is $x^* = 4$.
 - (c) state Rolle's Theorem. For the profit function of part (a), find the intervals $[\alpha, \beta]$ where:
 - i) the hypotheses or conditions of the theorem are satisfied.
 - ii) the thesis or result of the theorem is verified. Notice that in this case not every condition of the hypothesis needs to be satisfied.

0.4 points part a); 0.3 points part b); 0.3 points part c).

a) First of all, we calculate the profit function.

 $B(x) = (a - 5x)x - (C_0 + 2x + x^2) = -6x^2 + (a - 2)x - C_0$ Secondly, we calculate the first and second order derivatives of B: B'(x) = -12x + a - 2; B''(x) = -12 < 0

we see that B has a unique critical point at $x^* = \frac{a-2}{12}$ and, since B is a concave function, the critical point is the unique global maximizer.

Finally,
$$x^* = 4 = \frac{a-2}{12} \Longrightarrow a = 50.$$

b) The average cost function is $\frac{C(x)}{x} = \frac{C_0}{x} + 2 + x$, its first order derivative: $\left(\frac{C(x)}{x}\right)' = -\frac{C_0}{x^2} + 1 = 0 \iff x^2 = C_0$. Since $\left(\frac{C(x)}{x}\right)'' = \frac{2C_0}{x^2} > 0$ the function is convex and the cu

Since $\left(\frac{C(x)}{x}\right)'' = \frac{2C_0}{x^3} > 0$, the function is convex and the critical point will be the global minimizer.

Then $x^* = 4 \Longrightarrow C_0 = 16.$

c) The hypotheses are that B(x) must be continuous in the interval $[\alpha, \beta]$, derivable in the interval (α, β) and $B(\alpha) = B(\beta)$.

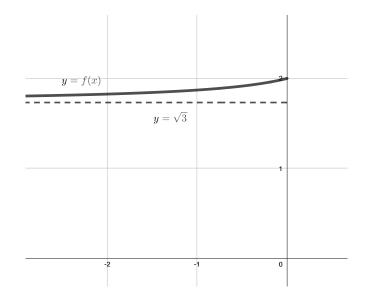
Since B(x) is a parabola, its graph is symmetric with respect to the line x = 4, so $0 \le \alpha < \beta$ must satisfied $(\alpha + \beta)/2 = 4 \Longrightarrow \beta = 8 - \alpha, \alpha \in [0, 4)$.

The thesis is that exist $\gamma \in (\alpha, \beta)$ such that $B'(\gamma) = 0$.

Obviously, it is satisfied if $0 \le \alpha < 4 < \beta$, since B'(4) = 0.

(4) Let $f(x) = \begin{cases} \sqrt{3 + e^{2x}} & , x \le 0\\ \sqrt{a - be^{-x}} & x > 0 \end{cases}$, be a piece-wise defined function in \mathbb{R} , where a > b > 0. Then:

- (a) Calculate a and b such that f(x) is derivable at x = 0.
- (b) for the function f(x) study the existence of an asymptote at $-\infty$ and find its intervals of convexity and concavity on $(-\infty, 0)$.
- (c) find the intervals where f(x) increases and decreases and draw the graph of the function on $(-\infty, 0]$ (first piece).


- a) First of all, we need the function f to be continuous at x = 0. Since $\lim_{x \to 0^+} f(x) = \sqrt{a-b}$, and $f(0) = 2 = \lim_{x \to 0^-} f(x)$, we obtain that the function is continuous on [-1, 1] if a - b = 4. Moreover, supposing f continuous, the function will be derivable at x = 0 when: $\lim_{x\to 0^+} f'(x) = f'(0^+)$ is equal to $f'(0^-)$. So, we obtain: i) $\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^+} \frac{be^{-x}}{2\sqrt{a - be^{-x}}} = \frac{b}{2\sqrt{a - b}} = \frac{b}{4};$ ii) $x < 0 \Longrightarrow f'(x) = \frac{2e^{2x}}{2\sqrt{3 + e^{2x}}} \Longrightarrow f'(0^-) = \frac{2}{4}.$ Then, f(x) is derivable at x = 0 if b = 2, a = 6. b) $\lim_{\substack{x \to -\infty \\ -\infty}} f(x) = \lim_{x \to -\infty} \sqrt{3 + e^{2x}} = \sqrt{3}$. Then $y = \sqrt{3}$ is the horizontal asymptote of the function at
- A 1

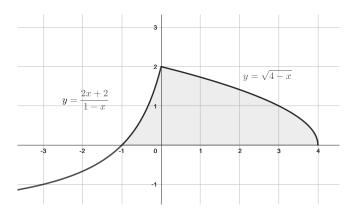
About convexity and concavity, we observe that:

$$2e^{2x}\sqrt{3+e^{2x}} = e^{2x}(2e^{2x}/2\sqrt{3+e^{2x}})$$

$$\begin{aligned} x < 0 \implies f''(x) &= \frac{2e^{2x}\sqrt{3 + e^{2x}} - e^{2x}(2e^{2x}/2\sqrt{3 + e^{2x}})}{3 + e^{2x}} = \\ f''(x) &= \frac{2e^{2x}(3 + e^{2x}) - e^{2x}e^{2x}}{(3 + e^{2x})^{3/2}} = \frac{6e^{2x} + e^{4x}}{(3 + e^{2x})^{3/2}} > 0. \end{aligned}$$

Then, $f(x)$ is convex on $(-\infty, 0)$.

c) The function is obviously increasing on $(-\infty, 0]$ and has a horizontal asymptote $y = \sqrt{3}$, so the graph of the function is approximately this:


- (5) Given the functions $f, g: \mathbb{R} \longrightarrow \mathbb{R}$, defined by: $f(x) = \frac{2x+2}{1-x}$, $g(x) = \sqrt{4-x}$, then:
 - (a) draw approximately the set A bounded by the graph of these functions and the x-axis y = 0. Using Pareto order, find if they exist, the maximal and minimal elements, the maximum and the minimum of A.
 - (b) calculate the area of the given set.0.4 points part a); 0.6 points part b)
 - a) First of all, we can see that the line y = 0 intersect the graph of the functions: f(x) at x = -1 and g(x) at x = 4.

Secondly, f(x) is increasing on [-1,1) (since $f(x) = \frac{2x-2+4}{1-x} = -2 + \frac{4}{1-x}$ then $f'(x) = \frac{4}{1-x}$

 $\frac{4}{(1-x)^2} > 0$ and g(x) is decreasing. So, their graphs only intersect in one point in the interval. In fact, at x = 0, since f(0) = 2 = g(0).

Moreover, since x > 1, $f(x) < 0 \le g(x)$, these graphs don't intersect each other in the interval (1, 4].

So, the draw of A will be approximately like,

Then, Pareto order describes the set properties: $Minimum(A) = minimum elements(A) = \{(-1, 0)\}.$ The maximum doesn't exist and maximal elements $(A) = \{(x, g(x)) : 0 \le x \le 4\}.$

b) First of all, looking at the position of the graphs we know that:

$$\begin{aligned} \operatorname{area}(\mathbf{A}) &= \int_{-1}^{0} f(x) dx + \int_{0}^{4} g(x) dx. \\ \operatorname{Since} \int f(x) dx &= \int (-2 + \frac{4}{1-x}) dx = -2x - 4 \ln(1-x), \text{ then applying Barrow's Rule we obtain:} \\ \int_{-1}^{0} f(x) dx &= [-2x - 4 \ln(1-x)]_{-1}^{0} = 0 - (-2(-1) - 4 \ln(1 - (-1)) = -2 + 4 \ln 2). \\ \operatorname{Moreover, since} \int g(x) dx &= \int \sqrt{4-x} dx = -\frac{2}{3}(4-x)^{3/2}, \text{ applying Barrow's Rule:} \\ \int_{0}^{4} g(x) dx &= [-\frac{2}{3}(4-x)^{3/2}]_{0}^{4} = 0 - (-\frac{2}{3}(4-0)^{3/2}) = \frac{16}{3}; \text{ then:} \\ \operatorname{area}(\mathbf{A}) &= \int_{-1}^{0} f(x) dx + \int_{0}^{4} g(x) dx = -2 + 4 \ln 2 + \frac{16}{3} \text{ area units.} \end{aligned}$$