Universidad Carlos III de Madrid

Exercise	1	2	3	4	5	6	Total
Points							

Department of Economics

Mathematics I Final Exam

January 26th 2021

Exam	time:	2	hours.

LAST NAME:		FIRST NAME:
ID:	DEGREE:	GROUP:

(1) Consider the function $f(x) = (x+1)^2 e^{-x}$. Then:

- (a) find the asymptotes of the function and the intervals where f(x) increases and decreases.
- (b) find the global maximum and minimum, and range (or image) of f(x). Draw the graph of the function.
- (c) consider $f_1(x)$ to be the function f(x) defined on the interval [-1,1], sketch the graph of the inverse function of $f_1(x)$.

(Hint for part (c): do not try to calculate the explicit formula of the inverse function of f_1) 0.4 points part a); 0.4 points part b); 0.2 points part c)

(a) The domain of the function is \mathbb{R} .

Since f is continuous on its domain, we only need to study its asymptotes at ∞ and $-\infty$:

i)
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{(x+1)^2}{e^x} = \frac{\infty}{\infty} = [\text{ applying L'Hopital's Rule twice }] = \lim_{x \to \infty} \frac{2}{e^x} = \frac{2}{\infty} = 0.$$
 Therefore $f(x)$ has a horizontal asymptote $y = 0$ at ∞ .

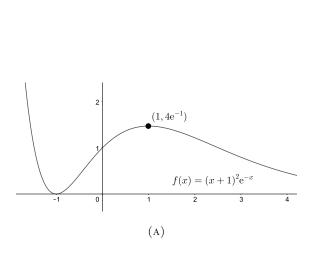
ii) $\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{(x+1)^2}{x}$. $\lim_{x \to -\infty} e^{-x} = -\infty$, then f has no horizontal neither oblique asymptote at $-\infty$.

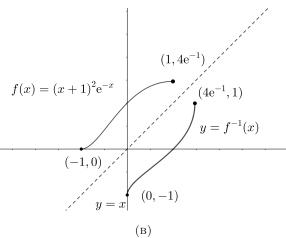
As $f'(x) = e^{-x}(1-x^2)$, we can deduce: f is increasing $\iff f'(x) > 0 \iff 1-x^2 > 0$; then f is increasing on [-1,1]. Analogously, f is decreasing on $(-\infty,-1]$ and $[1,\infty)$.

(b) Interpreting the monotonicity of f, it is deduced that -1 is a local minimizer and 1 is a local maximizer. Since $\lim_{x \to -\infty} f(x) = \infty$, there is no global maximum. In addition, as f(-1) = 0 and f(x) > 0 (if $x \neq -1$), it is deduced that 0 is a strict (unique) global minimizer. Finally, as $f(-1) = 0, f(x) \geq 0$ and $\lim_{x \to -\infty} f(x) = \infty$, due to the Intermediate Value Theorem we can deduce that the range of the function will be $[0, \infty)$.

The graph of f will have an appearance approximately, similar to the one in figure A.

(c) We know that, f_1 is increasing on [-1,1], $f_1(-1) = 0$, $f_1(1) = 4/e$. Therefore, the graph of its inverse will have an appearance approximately, similar to the one in figure B:





(2) Given the implicit function y = f(x), defined by the equation $e^x + ye^y = 2e$ in a neighbourhood of the point x = 1, y = 1, it is asked:

- (a) find the tangent line and the second-order Taylor Polynomial of the function at a=1.
- (b) sketch the graph of the function f near the point x = 1, y = 1. Use the tangent line to the graph of f(x) to obtain the approximate values of f(0.9) and f(1.1).

Will f(1) be greater, less or equal than the exact value of $\frac{1}{2}(f(0.9) + f(1.1))$? (Hint for part (b): use that f''(1) < 0.

0.5 points part a); 0,5 points part b)

(a) First of all, we calculate the first-order derivative of the equation:

$$e^{x} + y'e^{y} + yy'e^{y} = e^{x} + y'(y+1)e^{y} = 0$$

evaluating at
$$x = 1$$
, $y(1) = 1$ we obtain: $y'(1) = f'(1) = -1/2$.

Then the equation of the tangent line is: $y = P_1(x) = 1 - \frac{1}{2}(x-1)$. Secondly, we calculate the second-order derivative of the equation:

$$e^{x} + y''(y+1)e^{y} + (y')^{2}e^{y} + y'(y+1)y'e^{y} = 0$$

evaluating at
$$x = 1$$
, $y(1) = 1$, $y'(1) = -1/2$ we obtain $y''(1) = f''(1) = -7/8$.

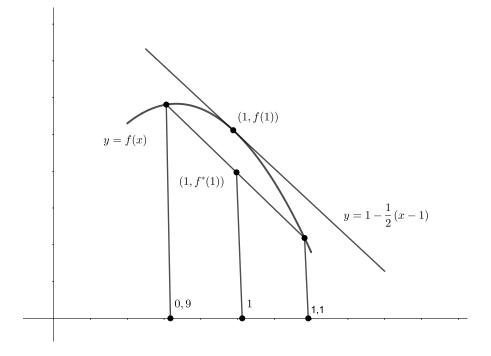
Therefore, the second-order Taylor Polynomial is: $y = P_2(x) = 1 - \frac{1}{2}(x-1) - \frac{7}{16}(x-1)^2$.

(b) Using the second-order Taylor Polynomial, the approximate graph of the function f, near the point x = 1, will be as you can see in the figure underneath. On the other hand, using the tangent line, the first order approximation will be:

$$f(1.1) \approx 1 - \frac{1}{2}(0.1) = 0.95; f(0.9) \approx 1 - \frac{1}{2}(-0.1) = 1.05.$$

Finally, since f(x) is concave, $\frac{1}{2}(f(0.9) + f(1.1))$ will be less than f(1), as you can notice looking at the graph below or if you prefer we can calculate its approximate value using the second-order Taylor Polynomial: $\frac{1}{2}(f(0.9) + f(1.1)) \approx 1 - \frac{7}{8}0.01 < f(1) = 1$.

Naming $f^*(1) = \frac{1}{2}(f(0.9) + f(1.1))$, the graph will be:



- (3) Let $C(x) = C_0 + 50x + \frac{1}{2}x^2$ be the cost function and p(x) = 710 5x the inverse demand function of a monopolistic firm. Then:
 - (a) calculate the price p^* and the production x^* that maximizes the profit.
 - (b) find C_0 such that the production obtained in part a) would be the same that minimizes the average

0.5 points part a); 0.5 points part b)

(a) First of all, we calculate the profit function.

$$B(x) = (710 - 5x)x - (C_0 + 50x + \frac{1}{2}x^2) = -\frac{11}{2}x^2 + 660x - C_0$$

Secondly, we calculate the first and second order derivatives of B:

$$B'(x) = -11x + 660; \ B''(x) = -11 < 0$$

we see that B has a unique critical point at $x^* = \frac{660}{11} = 60$ and, since B is a concave function, the critical point is the unique global minimizer.

Finally,
$$p^* = p(60) = 710 - 300 = 410$$

(b) The average cost function is $\frac{C(x)}{x} = \frac{C_0}{x} + 50 + \frac{1}{2}x$, its first order derivative: $\left(\frac{C(x)}{x}\right)' = -\frac{C_0}{x^2} + \frac{1}{2} = 0 \iff x^2 = 2C_0$.

Since $\left(\frac{C(x)}{x}\right)'' = \frac{2C_0}{x^3} > 0$, the function is convex and the critical point will be the global

Since $x^* = 60$ must be the minimizer, the solution will be

$$60 = x^* = \sqrt{2C_0} \Longrightarrow C_0 = 1800.$$

(4) Let
$$f(x) = \begin{cases} (x+a)^2, & x < 2 \\ b, & x = 2 \text{ be a piece-wise defined function in the interval } [1,3]. \end{cases}$$
 Then:

- (a) state Weierstrass' Theorem for a function g defined in an interval I. Calculate a y b such that f(x)satisfies the hypothesis of this theorem.
- (b) suppose that a = -1, find the values of b such that the thesis (or conclusion) of Weierstrass' Theorem is satisfied in the interval [1,3]. What can you say for the intervals [1,2] or [2,3]? 0.4 points part a); 0.6 points part b)
- (a) The hypothesis is that g is continuous in an interval I closed and bounded. The thesis (or conclusion) is that the function q attains its global maximum and minimum on I.

Thus, we need that the function f is continuous at x = 2.

Since,
$$\lim_{x \to a^+} f(x) = -4 + 12 + 1 = b = f(2) \Longrightarrow b = 9.$$

Since,
$$\lim_{x\longrightarrow 2^+} f(x) = -4 + 12 + 1 = b = f(2) \Longrightarrow b = 9$$
.
And $\lim_{x\longrightarrow 2^-} f(x) = (2+a)^2 = 9 = f(2) \Longrightarrow a = -5$ or $a = 1$.

Therefore, we can deduced that the function will be continuous in [1, 3] when: b = 9 and (a = -5)or a = 1).

(b) For the value a = -1 the hypothesis of the theorem is not satisfied in the interval [1, 3]. Meanwhile, it could be possible that the thesis is satisfied in this interval depending on the values of b.

If we notice that f is increasing in [1,2) and also in (2,3], and furthermore:

$$0 = f(1) < \lim_{x \longrightarrow 2^-} f(x) = 1 < 9 = \lim_{x \longrightarrow 2^+} f(x) < f(3) = 10.$$
 We can consider three different cases depending on b :

i)
$$b \le 0 \Longrightarrow \min f = b, \max f = 10$$
.

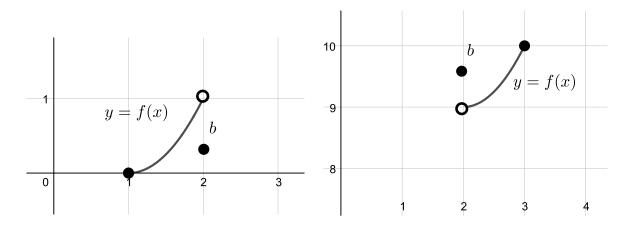
ii)
$$0 \le b \le 10 \Longrightarrow \min f = 0, \max f = 10.$$

iii)
$$10 \le b \Longrightarrow \min f = 0, \max f = b$$
.

Then, for any real value of b the thesis of Weierstrass' Theorem is satisfied.

Now, in the case of the interval [1, 2] the theorem is only satisfied if $b \ge 1$, and it happens that $\min f = 0$, $\max f = b$. Notice that if b < 1 the maximum doesn't exist as we can appreciate in the left graph below.

Analogously, in the case of the interval [2,3] the theorem is only satisfied if $b \leq 9$, and it happens that min f = b, max f = 10. Notice that if b > 9 the minimum doesn't exist, as we can appreciate in the right graph below.

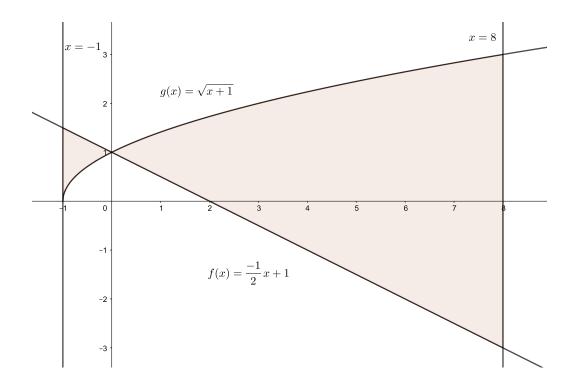


- (5) Given the functions $f, g: [-1, 8] \longrightarrow \mathbb{R}$, defined by: $f(x) = -\frac{1}{2}x + 1$, $g(x) = \sqrt{x + 1}$, then:
 - (a) draw approximately the set A, bounded by the graph of these functions and the straight lines x = -1, x = 8. Find, if they exist, the maximal and minimal elements, the maximum and the minimum of A.
 - (b) calculate the area of the given set (expressing the result as a whole number plus a fraction between 0 and 1).

Hint for part (a): Pareto order is defined as: $(x_0, y_0) \leq_P (x_1, y_1) \iff x_0 \leq x_1, y_0 \leq y_1$. 0.6 points part a); 0.4 points part b)

- (a) f(x) and g(x) are increasing functions and f(0) = g(0) = 1 then:
 - i) g(x) < f(x) if -1 < x < 0; and
 - ii) f(x) < g(x) if 0 < x < 8.

So, the draw of A will be approximately like,



Then, Pareto order describes the set properties: $maximum(A) = maximal \ elements(A) = (8,3)$. Also, since g(-1) = 0 = f(2), then:

the minimum doesn't exist and minimal elements $(A) = \{(-1,0)\} \cup \{(x,f(x)): 2 < x \le 8\}$.

(b) First of all, looking at the position of the graphs we know that:
$$\operatorname{area}(A) = \int_{-1}^{0} (f(x) - g(x)) dx + \int_{0}^{8} (g(x) - f(x)) dx = \int_{-1}^{0} (-\frac{1}{2}x + 1 - \sqrt{x + 1}) dx + \int_{0}^{8} (\sqrt{x + 1} + \frac{1}{2}x - 1) dx = \int_{-1}^{8} (-\frac{1}{2}x + 1 - \sqrt{x + 1}) dx + \int_{0}^{8} (-\frac{1}{2}x + 1 - \sqrt{x + 1}) dx + \int_{0}^{8} (-\frac{1}{2}x + 1 - \sqrt{x + 1}) dx = \int_{0}^{8} (-\frac{1}{2}x + 1 - \sqrt{x + 1}) dx + \int_{0}^{8} ($$

Then applying Barrow's Rule we obtain:

$$= [-\frac{1}{4}x^2 + x - \frac{2}{3}(x+1)^{3/2}]_{-1}^0 + [\frac{2}{3}(x+1)^{3/2} + \frac{1}{4}x^2 - x]_0^8 =$$

$$= [-\frac{2}{3} - (-\frac{1}{4} - 1)] + [\frac{2}{3}9^{3/2} + \frac{1}{4}8^2 - 8 - \frac{2}{3}] = 25 + \frac{11}{12} \text{ area units.}$$

- (6) Given the function $f(x) = \frac{3x+5}{x+1}$. Then:
 - (a) calculate $\int_0^1 f(t)dt$.
 - (b) suppose now that we interchange f(x) by a decreasing convex function g(x) so that g(0) = 5, g(1) = 4. Whith the provided information, find the greatest A_1 and the least B_1 such that $A_1 < \int_0^1 g(x)dx < B_1$.
 - (c) finally, suppose that g(x) is a convex function such that g(0) = 5, g(1) = 4, $g'(1) = -\frac{1}{2}$. Find $A_2 > A_1$ so that $A_2 < \int_0^1 g(x) dx$. Discuss if the function g(x) will be decreasing or not. Hint for part (b): draw f(x) and the segment that joint the points (0, f(0)) with (1, f(1)). Hint for part (c): draw f(x) and its tangent line at x = 1.
 - 0.2 points part a); 0.4 points part b); 0.4 points part c).
 - (a) $\int_0^1 f(x)dx = \int_0^1 (3 + \frac{2}{x+1})dx = [3x + 2\ln(x+1)]_0^1 = 3 + 2\ln 2.$
 - (b) i) First of all, since g(x) is decreasing, $g(1) = 4 < g(x) \Longrightarrow 4 < \int_0^1 g(x) dx$. Then $A_1 = 4$ ii) Secondly, g(x) is underneath the line segment joining the points (0,5) y (1,4). The equation of this line is y = 5 x, then $\int_0^1 g(x) dx < 5 \frac{1}{2} = 4 + \frac{1}{2}$. The draw of g(x), together with the line segment can be seen in the left graph below. Then, $B_1 = 4 + \frac{1}{2}$
 - (c) i) First of all, g(x) is decreasing in [0,1], since g'(x) is increasing (g is a convex function), then $x < 1 \Longrightarrow g'(x) < g'(1) < 0$.
 - ii) Secondly, g(x) is above the line $y = g(1) + g'(1)(x-1) = 4 \frac{1}{2}(x-1)$, tangent to g(x) at x = 1. Then, $\int_0^1 (4 \frac{1}{2}(x-1)) dx < \int_0^1 g(x) dx \Longrightarrow 4 + \frac{1}{4} < \int_0^1 g(x) dx$.

The draw of g(x), together with the tangent line at x=1 can be seen in the right graph below. Being the solution $A_2=4+\frac{1}{4}$

