MATHEMATICS I: ORDERED SETS.

Definition 1: (X, \leq) is an ordered set when the relation \leq satisfies the reflective, antisymmetric and transitive properties. That is:

- i) reflective $(a \leq a)$;
- ii) antisymmetric ($[a \le b \ y \ b \le a] \Rightarrow a=b$);
- iii) transitive $[a \le b \ y \ b \le c] \Rightarrow a \le c$.

Definition 2: (X, \leq) is a total order if $\forall x, y \in X \Rightarrow [x \leq y \ o \ y \leq x]$. Examples: (R, \leq) is a total order. (R^2, \leq_P) is a non-total or partial order defined by: $(x_1, y_1) \leq_P (x_2, y_2) \Leftrightarrow [x_1 \leq x_2, y_1 \leq y_2]$.

Geometrically, this means that (x_1, y_1) is on the left and below with respect to (x_2, y_2) . Therefore, (0,1) and (1,0) are not comparable.

- Definition 3: if (X, \leq) is a fully ordered set, we define, for any $A \subset X, A \neq \emptyset$: a) Maximum (A) = M $\Leftrightarrow [\forall a \in A \Rightarrow a \leq M \ y \ M \in A]$. b) minimum (A) = m $\Leftrightarrow [\forall a \in A \Rightarrow m \leq a \ y \ m \in A]$. Examples: if X=R, A finite and A = [0,1] have maximum, but neither A=[0,1) nor A=[0, ∞) *have*.
- Remark 1: Similarly, it is possible to define maximum and minimum in (X, \leq) , a partially ordered set, but it is a little useful concept.
- Example: A={(x, y): $x \ge 0$, $y \ge 0$, $x + y \le 1$ } has no maximum. To solve this lack, we introduce:

Definition 4: If (X, \leq) is a partially ordered set, for any $A \subset X$, $A \neq \emptyset$, we define: a) Maximal elements $(A) = \{a \in A : \nexists a' \in A, a' \neq a \neq a \leq a'\}$.

b) Minimal elements (A)={ $a \in A: \nexists a' \in A, a' \neq a \text{ y } a' \leq a$ }. In this way, the set : A={(x, y): $x \geq 0, y \geq 0, x + y \leq 1$ } has Maximal elements (A)={(x, y) \in A: x+y=1}.

Remark 2: Observe that, if a maximum M exists, then it is the unique maximal element. The same is true for minimum and minimal elements.

But the opposite is not true: the set

A={(x,y): $x=0, 0 \le y \le 1$ }U{0<x<1, y=0} has a unique maximal element, the point (0,1), but it has not a maximum.

Remark 3: a maximal element is also known as Pareto optimum. It is a basic concept in the economic language since the beginning of the 20^{th} century.