HOJA 4: Derivación II

1. Calcula los siguientes límites:

a)(*)
$$\lim_{x\to\infty} (1+x)^{1/x}$$
 b) $\lim_{x\to 0^+} x \ln x$ c)(*) $\lim_{x\to\infty} x^{1/x}$

d)(*) $\lim_{x\to 1^+} \left(\frac{1}{\ln x} - \frac{2}{x-1}\right)$ e) $\lim_{x\to\infty} xtg(1/x)$ f) $\lim_{x\to 0} \frac{arcsenx-arctgx}{x}$

g) $\lim_{x\to 1/2} (4x^2 - 1) tg(\pi x)$

2. Calcula las asíntotas de las siguientes funciones:

a)(*)
$$f(x) = \frac{2x^3 - 3x^2 - 8x + 4}{x^2 - 4}$$
 b) $f(x) = \frac{x^3}{x^3 + x^2 + x + 1}$ c)(*) $f(x) = 2x + e^{-x}$ d) $f(x) = \frac{\text{senx}}{x}$ e)(*) $f(x) = \frac{x - 2}{\sqrt{4x^2 + 1}}$ f) $f(x) = \frac{3x^2 - x + 2\text{senx}}{x - 7}$ g)(*) $f(x) = \frac{e^x}{x}$ h)(*) $f(x) = xe^{1/x}$ i)(*) $f(x) = \frac{x}{e^x - 1}$

3. (*)Halla el polinomio de Taylor de orden 2 en a y calcula el valor aproximado de la función mediante este polinomio en x = a + 0.1.

$$a) f(x) = e^x \text{ en } a = 0$$

a) $f(x) = e^x$ en a = 0 b) $f(x) = \sin x$ en a = 0 c) $f(x) = \frac{\ln x}{x}$ en a = 1

4. (*)Dado el polinomio de Taylor de orden 2 en a = 0 de f determina si la función tiene un máximo o mínimo local en el punto (0, f(0)).

a)
$$P(x) = 1 + 2x^2$$

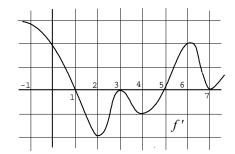
b) $P(x) = 1 + x + x^2$ c) $P(x) = 1 - 2x^2$

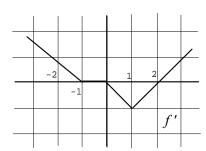
5. Calcula los máximos y mínimos (relativos y absolutos) de *f* en los intervalos indicados:

a)(*)
$$f(x) = 3x^{2/3} - 2x$$
 en $[-1,2]$.

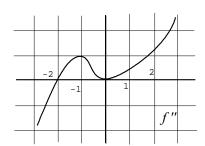
b) $f(x) = xe^{-x}$ en $[1/2, \infty)$, $[0, \infty)$ y IR.

- **6.** (*)Calcula en qué punto es mayor la pendiente de la recta tangente a la gráfica $y = -x^3 + 2x^2 + x + 2.$
- 7. Las figuras primera (*) y segunda muestran la gráfica de la derivada de distintas f. Determina el crecimiento/decrecimiento, concavidad/convexidad extremos relativos y puntos de inflexión de f.





8. La siguiente figura muestra la gráfica de la derivada segunda de f. Determina los intervalos de convexidad de f y los puntos de inflexión. Determina el crecimiento y los extremos relativos de fsupuesto que f'(-3) = f'(0) = 0.



- **9.** Sea $f(x) = \begin{cases} x^{\alpha} & \text{si } 0 \le x \le 1 \\ x^{\beta} & \text{si } 1 \le x \end{cases}$ Discutir, según los valores de α y β , cuándo f es cóncava o
- **10.** (*)Sea $f : \mathbb{R} \to \mathbb{R}$ convexa, y sea x > 0. Comprobar gráficamente las siguientes desigualdades: $f(1) < \frac{1}{2}(f(1-x) + f(1+x)) < \frac{1}{2}(f(1-2x) + f(1+2x))$
- **11.** (*)Sea $f: \mathbb{R} \to \mathbb{R}$ cóncava, y sea x > 0. Comprobar gráficamente las siguientes desigualdades: $f(1) > \frac{1}{2}(f(1-x) + f(1+x)) > \frac{1}{2}(f(1-2x) + f(1+2x))$
- **12.** (*)Sea $f: [0,\infty) \to \mathbb{R}$, convexa, tal que f'(1) = 0.
 - a) Hallar los extremos locales de f.
 - b) ¿Qué se puede decir de los extremos globales de f?
 - c) Supongamos ahora $f:[0,n] \to \mathbb{R}$. ¿Qué se puede decir de los extremos globales de f?
- **13.** (*)Sea $f: [0, \infty) \to \mathbb{R}$, cóncava, tal que f'(1) = 0.
 - a) Hallar los extremos locales de f.
 - b) ¿Qué se puede decir de los extremos globales de f?
 - c) Supongamos ahora $f:[0,n] \to \mathbb{R}$. ¿Qué se puede decir de los extremos globales de f?
- **14.** Estudia y representa las siguientes funciones:

a)
$$f(x) = x + \cos x$$
 b) $f(x) = \frac{e^{2x}}{e^x - 1}$ c) $f(x) = \frac{x}{\ln x}$ d) $f(x) = \sqrt{|x - 4|}$

- a) $f(x) = x + \cos x$ b) $f(x) = \frac{e^{2x}}{e^x 1}$ c) $f(x) = \frac{x}{\ln x}$ d) $f(x) = \sqrt{|x 4|}$ **15.** (*) Dadas las funciones de coste $C(x) = 4000 + 10x + 0.02x^2$ y demanda p(x) = 100 (x/100), halla el precio p por unidad que produce el máximo beneficio.
- **16.** (*)Sea $p(x) = x^2 x + 1/3$ el precio de venta de 1 kilo de plutonio cuando se venden xunidades. Sabiendo que la empresa vende en el mercado un máximo de 2 kilos, halla el valor de x que maximiza los ingresos de la empresa. Podemos suponer que todos los costes de la empresa los paga el estado.
- **17.** (*)Sea $p(x) = 100 x^2/2$ la función de demanda de un producto y $C(x) = 48 + 4x + 3x^2$ su función de coste. ¿Cuál es la producción x que minimiza el coste medio? ¿Y si hay una producción máxima $x^?$
- **18.** Una empresa que posee una función de costes $c(x) = x^2 + 1$ se enfrenta a una demanda dada por la función $p(x) = \begin{cases} 10 & 0 \le x \le 1 \\ 1 & 1 < x \le 10 \end{cases}$. Halla la producción que da máximo beneficio.
- 19. (*)Un fabricante vende 5000 unidades al mes a 100 euros por unidad y cree que sus ventas aumentarían en 500 unidades por cada 5 euros de reducción en el precio unitario.
 - a) Halla las funciones de demanda, ingreso e ingreso marginal.
 - b) Si el coste de producción de x unidades es C(x) = 1000 + 0.12x, halla la función de beneficio marginal.