WORKSHEET 3: Differentiation I

- 1. Find the points where the following functions have horizontal tangent.

- a) $f(x)=x^3+1$ b) $f(x)=1/x^2$ c) $f(x)=x+\sin x$ d) $f(x)=\sqrt{x-1}$ e) $f(x)=e^x-x$ f) $f(x)=\sin x+\cos x$
- 2. (*)Prove that the tangent lines to the graphs of y = x and y = 1/x in their points of intersection are perpendicular to each other.
- 3. In what point is the tangent to the curve $y^2 = 3x$ pararell to the line y = 2x?
- 4. (*)Calculate the intersection point with the x axis of the tangent line to the graph of $f(x) = x^2$ in the point (1,1).
- 5. Calculate a so that the tangent to the graph of f(x) = a/x + 1 in the point (1, f(1)) intersects the horizontal axis in x = 3.
- 6. (*) Find the tangent and normal lines to $f(x) = \arctan\left(\frac{\sin x}{1 + \cos x}\right)$ in x = 0.
- 7. Find the derivatives of the following functions.
 - a) $f(x) = (\sin x + \tan 3x)\sin 2x$ b) $f(x) = \frac{x\sqrt{x^2 1}}{2x + 6}$ c) $f(x) = 4x^{3/2}\cos 2x$ d) $f(x) = 5x\ln(8x + \sin 2x) + e^{\tan 5x}$
- 8. (*)Let $f(x) = 2[\ln(1+g^2(x))]^2$. Using that g(1) = g'(1) = -1, calculate f'(1).
- 9. (*) Using that $a^b = e^{b \ln a}$, differentiate $f(x) = x^{sinx}$ and $g(x) = (\sqrt{x})^x$.
- 10. (*)Let $f(x) = \ln(1+x^2)$ and $g(x) = e^{2x} + e^{3x}$. Calculate h(x) = f(g(x)), v(x) = g(f(x)), h'(0) and v'(0).
- 11. Let $f: [-2,2] \to [-2,2]$ be continuous and bijective.
 - a) Suppose that f(0) = 0 and $f'(0) = \alpha$, $\alpha \neq 0$. Find $(f^{-1})'(0)$.
 - b) Now suppose that f(0) = 1 and $f'(0) = \alpha$, $\alpha \neq 0$. Find $(f^{-1})'(1)$.
 - c) Now suppose that f(1) = 0 and $f'(1) = \alpha$, $\alpha \neq 0$. Find $(f^{-1})'(0)$.
- 12. (*)Supposing that the following equations define y as a differentiable function of x, calculate y' in the given points:
 - a) $x^3 + y^3 = 2xy$
 - b) $sin x = x(1 + \tan y)$ in $(\pi, 3\pi/4)$.
 - c) $x^2 + y^2 = 25$ in (3,4), (0,5) and (5,0).
- 13. Calculate the derivative of the following functions showing where they are not differentiable.

 - a)(*) $f(x) = \begin{cases} x^2 1 & \text{if } x \le 0 \\ 0 & \text{if } x > 0 \end{cases}$ b) (*) $g(x) = \begin{cases} 1/|x| & \text{if } x \le -2 \\ (x+2)^2 & \text{if } -2 < x \le 0 \\ 3 + \sin(x + \frac{\pi}{2}) & \text{if } x > 0 \end{cases}$ c) $h(x) = \begin{cases} \arcsin^2 x & \text{if } x \le 0 \\ \sin^3 x & \text{if } 0 < x \le 2\pi \\ \sin x & \text{if } 2\pi < x \end{cases}$
- 14. (*) Find a and b so that the function $f(x) = \begin{cases} 3x + 2 & \text{if } x \ge 1 \\ ax^2 + bx 1 & \text{if } x < 1 \end{cases}$ is differentiable.
- 15. Apply the mean value theorem to f in the given interval and find the c values of the thesis of the theorem.
 - a) $f(x) = x^2$ in [-2, 1]
- c) $f(x) = x^{2/3}$ in [0, 1]
- b) f(x) = -2sinx in $[-\pi, \pi]$ d) f(x) = 2sinx + sin2x in $[-\pi, \pi]$ d) $f(x) = 2\sin x + \sin 2x$ in $[0, \pi]$

- 16. Let $f:[a,b] \longrightarrow [a,b]$ be a continuous function in [a,b] and differentiable in (a,b). Prove that, if $f'(x) \neq 1$ in (a,b), then f has a unique fixed point in [a,b].
- 17. Prove that the function f has a unique fixed point.

a)
$$f(x) = 2x + \frac{1}{2}sinx$$

b)
$$f(x) = 2x + \frac{1}{2}\cos x$$

- 18. (*)Let $f(x) = x^3 3x + 3$, $f: [-3,2] \to \mathbb{R}$. Determine the global extrema.
- 19. Let $f: [-5,5] \to \mathbb{R}$ such that f reaches the maximum in x=2 and the minimum in x=-3. Let g(x)=-f(-x). What can be said about the maximum and the minimum of g?