WORKSHEET 2: Limits and Continuity

1. (*)Calculate
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3. Find the discontinuities, (if they exist) of the following functions:
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(*)Calcute the following limits:
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T with h(x) a function with finite limit when =z — 2.
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5. (*)Calculate
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6. Calculate all asymptotes of the following functions:
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7. Prove that every odd-degree polynomial has at least one root.

8. (*)a) Use the intermediate value theorem to check that the following functions have a zero at the specified
interval

i)f(z) =% —4x + 3 in [2,4]; ii)g(z) = 2® + 3z — 2 in [0, 1].

b) Obtain using interval partitions and succesive applications of Bolzano, the zero with and error of +0.25.

9. (*)Check that the equations 2% — 11z 4+ 7 = 0 and 2% — 4z = 0 have at least two solutions.



10. (*)Prove that the equation 27 + 3z +3 = 0 has a unique solution. Determine the integer part of that solution.

11. Find the domain and the range of the functions:
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12. If f and g are continous functions in [a,b] and f(a) < g(a), f(b) > g(b), prove that there exists a zo € (a, b)
such that f(xo) = g(xo)

13. a) Let f : [a,b] — R, continuous, such that Range(f) C [a,b]. Prove that f has at least a fixed point.
b) Also suppose that f is monotonic. Will exist an unique fixed point?

14. a) Prove using the Bolzano’s theorem of zeroes, that the function f (z) = 23 — 5

has at least one fixed point in the interval [0, n], for some n € N.

b) Obtain, with an error of +0.25, a fixed point of f.
c¢) Does a unique fixed point exist?

15. (*)Discuss in the following cases if the functions reach global and/or local extrema in the specified intervals:

a) f(z) =22 z € [—1,1] b) f (z) = 23 z € [-1,1]
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c) f(z) =sinz x€l0,7] d) f(z)=—23 ze[-1,1]
16. In the previous problem, replace the interval given by [0, 00) or by R in each one of the functions.
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maximun and minimun in [a, b] .

) , f i [a,b] — R. Discuss, depending on the values of a and b, when f reaches

18. Explain why f(z) = tgz has a maximun in [0, 7/4], but not in [0, 7].
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19. (*)a) Let C(z) = < +1x + 100, be the total cost of production function, supposing = > 7.
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Check if it has oblique asymptote when x — oc.
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b) Consider the function C,, () = ——=, that is, the average cost of production.

Check that it has a horizontal asymptothe when x — oco.
c¢) Is there any relationship between the oblique asymptote in part a) and the horizontal asymptote in part b?

20. (*)A banking entity offers a current account with the following conditions: the 250.000 fist euros non remu-
nerated, the rest by a 7% of annual interest. Consider the following function: ¢ : [0,00) — IR defined by
i(z)="1interes obtained in % when depositing some capital z and mantaining it during a year”.

i) Obtain i(x).
ii) Calculate lim i(z).
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iii) Does any capital ¢ exist such that i(c) = 77.
iv) From what capital is obtained at least a 6% of interest?

v) Graph the function i.



