HOJA 3: Diferenciación de funciones de 1 variable

- 1. Halla los puntos donde las siguientes funciones tienen tangente horizontal.

- a) $f(x)=x^3+1$ b) $f(x)=1/x^2$ c) $f(x)=x+\sin x$ d) $f(x)=\sqrt{x-1}$ e) $f(x)=e^x-x$ f) $f(x)=\sin x+\cos x$
- 2. (*)Prueba que las gráficas de y = x e y = 1/x tienen rectas perpendiculares entre sí en los puntos de corte.
- 3. En qué punto la tangente a la curva $y^2 = 3x$ es paralela a la recta y = 2x?
- **4.** (*)Calcula el punto de corte con el eje OX de la recta tangente a la gráfica de $f(x) = x^2$ en el punto (1,1).
- **5.** Calcula a para que la tangente a la gráfica de $f(x) = \frac{a}{x} + 1$ en el punto (1, f(1)) corte al eje horizontal en
- **6.** Determina el ángulo que forman las curvas $y = \frac{1}{2}(x^2 1)$ e $y = \frac{1}{2}(x^3 x)$ en los puntos de corte.
- 7. (*)Sea $f(x) = 2[\ln(1+g^2(x))]^2$. Sabiendo que g(1) = g'(1) = -1, calcula f'(1).
- **8.** (*) Sabiendo que $a^b = e^{b \ln a}$, deriva $f(x) = x^{\sin x}$ y $g(x) = (\sqrt{x})^x$.
- **9.** (*)Sean $f(x) = \ln(1+x^2)$ y $g(x) = e^{2x} + e^{3x}$. Calcula h(x) = f(g(x)), v(x) = g(f(x)), h'(0) y v'(0).
- **10.** Sea $f: [-2,2] \rightarrow [-2,2]$ continua y biyectiva.
 - a) Supongamos que f(0) = 0 y $f'(0) = \alpha$, $\alpha \neq 0$. Hallar $(f^{-1})'(0)$.
 - b) Supongamos ahora que f(0)=1 y $f'(0)=\alpha,\,\alpha\neq0.$ Hallar $\left(f^{-1}\right)'(1).$
 - c) Supongamos ahora que f(1) = 0 y $f'(1) = \alpha$, $\alpha \neq 0$. Hallar $(f^{-1})'(0)$.
- 11. (*) Suponiendo que las siguientes ecuaciones definen a y como función derivable de x, calcula y' en los puntos que se indican:

 - a) $x^3 + y^3 = 2xy$ en (1,1). b) $x^2 + y^2 = 25$ en (3,4), (0,5) y (5,0).
- **12.** (*)Halla $a \ y \ b$ para que la función $f(x) = \begin{cases} 3x + 2 & \text{si } x \ge 1 \\ ax^2 + bx 1 & \text{si } x < 1 \end{cases}$ sea derivable.
- 13. Aplica el teorema del valor medio a f en el intervalo indicado y halla los valores c de la tesis del teorema.
 - a) $f(x) = x^2$ en [-2, 1]
- c) $f(x) = x^{\frac{2}{3}}$ en [0, 1]
- b) $f(x) = -2 \sin x$ en $[-\pi, \pi]$ d) $f(x) = 2 \sin x + \sin 2x$ en $[0, \pi]$
- **14.** (*)Sea $f(x) = x^3 3x + 3$, $f: [-3,2] \to \mathbb{R}$. Determinar los extremos globales.
- **15.** Calcula los siguientes límites:
 - a)(*) $\lim_{x \to \infty} (1+x)^{1/x}$ b) $\lim_{x \to 0^+} x \ln x$ c)(*) $\lim_{x \to \infty} x^{1/x}$ d)(*) $\lim_{x \to 1^+} \left(\frac{1}{\ln x} \frac{2}{x-1} \right)$
- **16.** Calcula las asíntotas de las siguientes funciones:
 - a)(*) $f(x) = \frac{2x^3 3x^2 8x + 4}{x^2 4}$ b) $f(x) = \frac{x^3}{x^3 + x^2 + x + 1}$ c)(*) $f(x) = 2x + e^{-x}$ d) $f(x) = \frac{\sec x}{x}$ e)(*) $f(x) = \frac{x 2}{\sqrt{4x^2 + 1}}$ f) $f(x) = \frac{3x^2 x + 2 \sec x}{x 7}$ g)(*) $f(x) = \frac{e^x}{x}$ h)(*) $f(x) = xe^{1/x}$ i)(*) $f(x) = \frac{x}{e^x 1}$