Universidad Carlos III de Madrid

Exercise	1	2	3	4
Points				

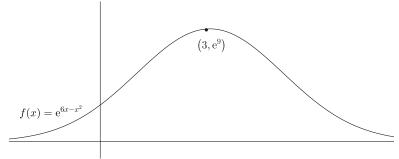
Department of Economics

Introduction to Mathematics Final Exam

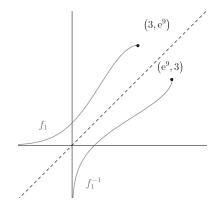
January 9th 2025

LAST NAME:		FIRST NAME:	
ID:	DEGREE:	GROUP:	

- (1) Consider the function $f(x) = e^{6x-x^2}$. Then:
 - (a) find the asymptotes and the increasing/decreasing intervals of f(x).
 - (b) find the local and global extreme points and the range of f(x). Draw the graph of the function.
 - (c) consider the function $f_1(x)$ restricted to the interval where f(x) it is increasing. Draw the graph of the inverse function of $f_1(x)$.
 - 0.4 points part a); 0.4 points part b); 0.2 points part c).
 - a) The domain of f(x) is \mathbb{R} . Since f is continuous in its domain, we only need to study its asymptotes on $-\infty$ and ∞ . Observing that $\lim_{x \longrightarrow \pm \infty} (6x x^2) = -\infty$, we can deduce that y = 0 is the horizontal asymptote of the function on $\pm \infty$.
 - On the other hand, as $f'(x) = e^{6x-x^2}(6-2x)$, we obtain that x=3 is the only critical point of f and we deduce that f is increasing on $(-\infty,3]$, because f'(x) > 0 on $(-\infty,3)$. Analogously, f is decreasing on $[3,\infty)$.
 - b) From the above we know that x = 3 is a local and global maximizer. Moreover, given that there is no local minimizer, there cannot be a global minimizer either.
 - Further more, since f is continuous on \mathbb{R} , monotonic in the intervals found and $\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = 0$, using the Intermediate Value Theorem it is deduced that the range of f is $(0, f(3)] = (0, e^9]$. Therefore, the graph of the function is approximately:



c) As we can notice, f_1 is increasing in $(-\infty, 3]$, $f_1(3) = e^9$, $f_1(x)$ has an horizontal asymptote which equation is y = 0 at $-\infty$ and its range is $(0, e^9]$. Then, its inverse function is define and it is increasing in $(0, e^9]$, it takes the value 3 at e^9 , and has a vertical asymptote with equation x = 0. The graph of the function f_1 and its inverse are approximately:



- (2) Given the implicit function y = f(x), defined by the equation $x^2 x + e^{-y} = 1$ in a neighbourhood of the point x = 0, y = 0, it is asked:
 - (a) find the tangent line and the second-order Taylor Polynomial of the function f at a=0.
 - (b) approximately sketch the graph of the function f(x) and its inverse $f^{-1}(x)$ near the point x=0.
 - (c) find the analytical expression of $f^{-1}(x)$.

(Hint for part (c): If y = f(x) satisfies the equation F(x,y) = C, then $y = f^{-1}(x)$ will satisfy F(y,x) = C)

0.4 points part a); 0.4 points part b); 0.2 points part c).

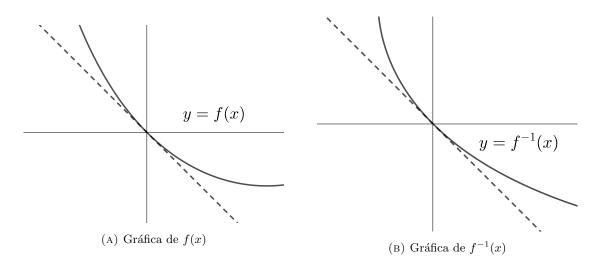
a) First of all, we notice that (0,0) is a solution of the equation. Now, we calculate the first orderderivative of the equation with respect to x at the point x = 0, y(0) = 0: $2x - 1 - y'e^{-y} = 0$ to obtain y'(0) = f'(0) = -1.

Then the equation of the tangent line is: $y = P_1(x) = -x$.

Analogously, we calculate the second-order derivative of the equation: $2 + (-y'' + (y')^2)e^{-y} = 0$ evaluating at x = 0, y(0) = 0, y'(0) = -1 we obtain: y''(0) = f''(0) = 3.

Therefore, the second-order Taylor Polynomial is: $y = P_2(x) = -x + \frac{3}{2}x^2$

b) Using the second-order Taylor Polynomial to approximate the graph of the function f, near the point x = 0, and the symmetry of its inverse function with respect to the principal diagonal (y = x) we can sketch both graphs and they can be seen in the figures bellow:



c) As $y = f^{-1}(x)$ satisfies the equation $y^2 - y + e^{-x} = 1 \iff y^2 - y + e^{-x} - 1 = 0$ we can deduced that:

$$y = \frac{1 \pm \sqrt{1 - 4(e^{-x} - 1)}}{2} = \frac{1 \pm \sqrt{5 - 4e^{-x}}}{2}.$$

¿Which sign should we choose? One possibility it is to notice that the point (0,0) solves the equation.

Thus,
$$0 = \frac{1 \pm \sqrt{5 - 4e^{-0}}}{2}$$
, then $y = \frac{1 - \sqrt{5 - 4e^{-x}}}{2}$.

Other possibility, it is to know that $f^{-1}(x)$ is decreasing. Since e^{-x} is decreasing, the function $\sqrt{5-4e^{-x}}$ is increasing, hence the need to choose the negative sign.

- (3) Let $C(x) = 16 + 5x + 4x\sqrt{x}$ be the cost function of a monopolistic firm and $p(x) = 35 \sqrt{x}$ be the inverse demand function. It is asked:
 - (a) calculate the production \hat{x} , such that the firm's profit is maximized.
 - (b) find the production x^* where the derivative of the average cost function is zero. Prove that this function is **NOT** convex.
 - (c) is x^* the global minimizer of the average cost function?

 (Hint for part (c): sketch approximately the graph of the function $\frac{C(x)}{x}$)

 0.4 points part a); 0.4 points part b); 0.2 points part c).
 - a) Fist of all, we calculate the profit function: $B(x)=(35-\sqrt{x})x-(16+5x+4x\sqrt{x})=-5x\sqrt{x}+30x-16x$. Then we calculate its first and second order derivatives: $B'(x)=-\frac{15}{2}\sqrt{x}+30; \qquad B''(x)=-\frac{15}{4\sqrt{x}}<0.$

We observe that B has only one critical point at $\hat{x} = \left(2 \cdot \frac{30}{15}\right)^2 = 16$ and, since B is a concave function, this critical point is the only global maximizer.

b) The average cost function is $\frac{C(x)}{x} = \frac{16}{x} + 5 + 4\sqrt{x}, \text{ with } x \neq 0,$ We calculate its first and second order derivatives:

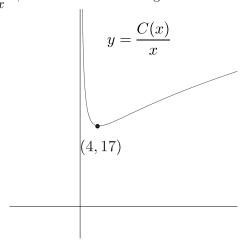
$$\left(\frac{C(x)}{x}\right)' = -\frac{16}{x^2} + \frac{4}{2\sqrt{x}}; \qquad \left(\frac{C(x)}{x}\right)'' = \frac{32}{x^3} - \frac{1}{x\sqrt{x}}.$$
 We observe that the average cost function has only one critical point at
$$-\frac{16}{x^2} + \frac{4}{2\sqrt{x}} = 0 \Longleftrightarrow x^2 = 8\sqrt{x} \iff (\sqrt{x})^3 = 8 \iff \sqrt{x} = 2 \iff x^* = 4,$$

with
$$\left(\frac{C(4)}{4}\right)'' = \frac{32}{64} - \frac{1}{8} > 0$$
 and then $x^* = 4$ is a local minimizer.

However, taking x = 100, $\left(\frac{C(100)}{100}\right)'' = \frac{32}{1000000} - \frac{1}{1000} < 0$, then the function is not convex and we cannot ensure that the critical point is the global minimizer for the average cost function.

that: $\left(\frac{C(x)}{x}\right)' < 0$ if 0 < x < 4; and $\left(\frac{C(x)}{x}\right)' > 0$ when x > 4. Hence, $\frac{C(x)}{x}$ is decreasing in (0,4] and increasing in $[4,\infty)$. Therefore, the critical point is the only global minimizer of $\frac{C(x)}{x}$, as it is shown in the figure:

c) Now, studying the monotonicity of the function from the sign of its first order derivative we observe



(4) Given the function $f(x) = \begin{cases} x^2 - 2x + a^2 & x < 2 \\ x^2 - 7x + 12 & x \geqslant 2 \end{cases}$ Then:

- (a) state Bolzano's Zero Theorem for the function f defined on the interval [1, K], where K > 2. Determine the values of a and K for the function f(x) so the hypothesis (or initial conditions) of the theorem is satisfied.
- (b) state Lagrange's Mean Value Theorem for a function f defined on [-1, 2]. Find the value of a such that the hypothesis of the theorem is satisfied.

For the found values of a, calculate the point or points c where the thesis (or conclusion) of the theorem is satisfied.

0.5 points part a); 0.5 points part b).

- a) The hypothesis is that f is continuous in [1,K] and also $f(1)\cdot f(K)<0$. The thesis or conclusion is that there exist a point $c\in(1,K)$ such that f(c)=0. First of all, we need that f is continuous at x=2. Since $\lim_{x\longrightarrow 2^-} f(x)=a^2$, $f(2)=\lim_{x\longrightarrow 2^+} f(x)=2$, we can deduce that the function is continuous on [0,K] when $a=\pm\sqrt{2}$. Secondly, supposing f continuous, we obtain $f(1)=-1+a^2=-1+(\pm\sqrt{2})^2=1>0$, then the condition $f(1)\cdot f(K)<0$ is satisfied when f(K)<0. On the other hand, we have $x^2-7x+12=(x-3)(x-4)$, then f(K)<0 if 3< K<4. Finally, the hypothesis of Bolzano's Theorem is satisfied if: $a=\pm\sqrt{2}$, and 3< K<4.
- b) The hypothesis of the theorem is that f is continuous on [-1,2] and derivable in (-1,2). The thesis or conclusion is that there is a point $c \in (-1,2)$ such that $\frac{f(2)-f(-1)}{3}=f'(c)$. We have already seen that the function is continuous on [-1,2] when $a=\pm\sqrt{2}$. But now, we don't need the function to be derivable at x=2. Since $f(2)-f(-1)=-3\Longrightarrow \frac{-3}{3}=-1=f'(c)=(2c-2)$, it is satisfied if $2c-2=-1\Longrightarrow c=1/2\in (-1,2)$.