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CHAPTER 2: LIMITS AND CONTINUITY OF FUNCTIONS IN

EUCLIDEAN SPACE

1. Scalar product in Rn

Definition 1.1. Given x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn,we define their
scalar product as

x · y = 〈x, y〉 =

n∑
i=1

xiyi

Example 1.2. (2, 1, 3) · (−1, 0, 2) = −2 + 6 = 4

Remark 1.3. x · y = y · x.

Definition 1.4. Given x = (x1, · · · , xn) ∈ Rn we define its norm as

‖x‖ =
√
x · x =

√
x21 + · · ·+ x2n

Example 1.5. Example: ‖(−1, 0, 3)‖ =
√

10

Remark 1.6. The following are some interpretations of the norm.

• The norm ‖x‖ is the distance from x to the origin.
• We may also interpret ‖x‖ as the length of the vector x.
• The norm ‖x− y‖ is the distance between x and y.

Remark 1.7. Let θ be the angle between u and v. Then,

cos θ =
u · v
‖u‖‖v‖

2. 1. The Euclidean space Rn

Definition 2.1. Given p ∈ Rn and r > 0 we define the open ball of center p and
radius r as the set

B(p, r) = {y ∈ Rn : ‖p− y‖ < r}

and the closed ball of center p and radius r as the set

B(p, r) = {y ∈ Rn : ‖p− y‖ ≤ r}

Remark 2.2.

• Recall that ‖p− y‖ is distance from p to y.

• For n = 1, we have that B(p, r) = (p− r, p+ r) and B(p, r) = [p− r, p+ r].
1
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• For n = 2, 3 the closed balls are

n = 2 n = 3

• For n = 2, 3 the open balls are

n = 2 n = 3

Definition 2.3. Let S ⊂ Rn. We say that p ∈ Rn is interior to S if there is some
r > 0 such that B(p, r) ⊂ S.

Notation:
◦
S is set of interior points of S.

Remark 2.4. Note that
◦
S⊂ S because p ∈ B(p, r) for any r > 0.

Example 2.5. Consider S ⊂ R2, S = [1, 2]× [1, 2]. Then,
◦
S= (1, 2)× (1, 2).
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Example 2.6. Consider S = [−1, 1] ∪ {3} ⊂ R. Then,
◦
S= (−1, 1).

0- 1 21 3

[

S

0- 1 21 3

ºS

] ( )

Definition 2.7. A subset S ⊂ Rn is open if S =
◦
S

Example 2.8. In R, the set S = (−1, 1) is open, T = (−1, 1] is not.

ºS

- 1 1

(
S

) (
T

]
=

- 1 1 - 1 1

Tº

( )
= S

Example 2.9. The set S = {(x, 0) : −1 < x < 1} is not open in R2.

- 1 1

( )
- 1 1

( )( )

n = 1 n = 2
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You should compare this with the previous example

Example 2.10. The open ball B(p, r) is an open set.

Example 2.11. The closed ball B(p, r) is not an open set, because
◦

B(p, r)= B(p, r).

B(p,r) B(p,r)
º

= B(p,r)

Example 2.12. Consider the set S = {(x, y) ∈ R2 : x2 + y2 ≤ 1, x 6= y}. Then,
◦
S= {(x, y) ∈ R2 : x2 + y2 < 1, x 6= y}. So, S is not open.

S ºS

Proposition 2.13.
◦
S is the largest open set contained in S. (That is

◦
S is open,

◦
S⊂ S and if A ⊂ S is open, then A ⊂

◦
S).

Definition 2.14. Let S ⊂ Rn. A point p ∈ Rn is in the closure of S if for any
r > 0 we have that B(p, r) ∩ S 6= ∅.

Notation: S̄ is the set of points in the closure of S.

Example 2.15. Consider the set S = [1, 2) ⊂ R. Then, the points 1, 2 ∈ S̄. But,
3 /∈ S̄.
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Example 2.16. Consider the set S = B ((0, 0), 1) ⊂ R2. Then, the point (1, 0) ∈ S̄.
But, the point (1, 1) /∈ S̄.

(1,0)

S
(1,1)

Example 2.17. Let S = [0, 1], T = (0, 1). Then, S̄ = T̄ = [0, 1].

Example 2.18. Let S = {(x, y) ∈ R2 : x2 + y2 ≤ 1, x 6= y}. Then, S̄ = B ((0, 0), 1).

S S

Example 2.19. B(p, r) is the closure of the open unit ball B(p, r).

Remark 2.20. S ⊂ S̄.

Definition 2.21. A set F ⊂ Rn is closed if F = F̄ .

Proposition 2.22. A set F ⊂ Rn is closed if and only if Rn \ F is open.

Example 2.23. The set [1, 2] ⊂ R is closed. But, the set [1, 2) ⊂ R is not.

Example 2.24. The set B(p, r)is closed. But, the set B(p, r) is not.

Example 2.25. The set S = {(x, y) ∈ R2 : x2 + y2 ≤ 1, x 6= y}is not closed.

Proposition 2.26. The closure S̄ of S is the smallest closed set that contains S.
(That is S̄ is closed, S ⊂ S̄ and if F is another closed set that contains S, then
S̄ ⊂ F ).

Definition 2.27. Let S ⊂ Rn, we say that p ∈ Rn is a boundary point of S if
for any positive radius r > 0, we have that,

(1) B(p, r) ∩ S 6= ∅.
(2) B(p, r) ∩ (Rn \ S) 6= ∅.

Notation: The set of boundary points of S is denoted by ∂S.
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Example 2.28. Let S = [1, 2), T = (1, 2). Then, ∂S = ∂T = {1, 2}.

1 2

[
S

)
1 2

(
T

)
1 2

S T∂ ∂=

Example 2.29. Let S = [−1, 1] ∪ {3} ⊂ R. Then, ∂S = {−1, 1, 3}.

0- 1 21 3

[
S

]
0- 1 21 3

S∂

Example 2.30. Let S ⊂ R2, S = [1, 2]× [1, 2]. Then, ∂S is

S

1 2

1

2
∂

1 2

1

2
S

Example 2.31. S = {(x, y) ∈ R2 : x2 + y2 ≤ 1, x 6= y}. Then, ∂S = {(x, y) :
x2 + y2 = 1}

⋃
{(x, y) ∈ R2 : x2 + y2 ≤ 1, x = y}.

S S∂

The above concepts are related in the following Proposition.

Proposition 2.32. Let S ⊂ Rn, then

(1)
◦
S= S \ ∂S

(2) S̄ = S ∪ ∂S
(3) ∂S = S ∩ Rn \ S.
(4) S is closed ⇔ S = S ⇔ ∂S ⊂ S
(5) S is open ⇔ S =

◦
S ⇔ S ∩ ∂S = ∅.

Proposition 2.33.

(1) The finite intersection of open (closed) sets is also open (closed).
(2) The finite union of open (closed) sets is also open (closed).
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Definition 2.34. A set S ⊂ Rn is bounded if there is some R > 0 such that
S ⊂ B(0, R).

Example 2.35. The straight line V = {(x, y, z) ∈ R3 : x − y = 0, z = 0} is not a
bounded set.

Example 2.36. The ball B(p,R) of center p and radius R is bounded.

Definition 2.37. A subset S ⊂ Rn is compact if S is closed and bounded.

Example 2.38. S = {(x, y) ∈ R2 : x2 + y2 ≤ 1, x 6= y} is not compact (bounded,
but not closed).

Example 2.39. B(p,R) is not compact (bounded, but not closed).

Example 2.40. B(p,R) is compact.

Example 2.41. (0, 1] is not compact. [0, 1] is compact.

Example 2.42. [0, 1]× [0, 1] is compact.

Definition 2.43. A subset S ⊂ Rn is convex if for any x, y ∈ S and λ ∈ [0, 1] we
have that λ · x+ (1− λ) · y ∈ S.

Example 2.44. Let A a matrix of order n×m and let b ∈ Rm. We define

S = {x ∈ Rn : Ax = b}
as the set of solutions of the linear system of equations Ax = b. Let x, y ∈ S, be
two solutions of this linear system of equations. Then, we have that Ax = Ay = b.
If we now take any 0 ≤ t ≤ 1 (indeed any t ∈ R) then

A(tx+ (1− t)y) = tAx+ (1− t)Ay = tb+ (1− t)b = b

that is, tx+ (1− t)y ∈ S so the set of solutions of a linear system of equations is a
convex set.

Example 2.45. {(x, y) ∈ R2 : x2 + y2 ≤ 1, x 6= y} is not a convex set.

S

x

y

3. Function of several variables

We study now functions f : Rn → R

Example 3.1.

• f : R2 → R defined by

f(x, y) = x+ y − 1

also
f(x, y) = x sin y
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• f : R3 → R defined by

f(x, y, z) = x2 + y2 +
√

1 + z2

also
f(x, y, z) = z expx2 + y2

• f : R4 → R defined by

f(x, y, z, t) = sinx+ y + z exp t.

Occasionally, we will consider functions f : Rn → Rm like, for example, f : R3 →
R2 defined by

f(x, y, z) = (x exp y + sin z, x2 + y2 − z2)

But, if we write f(x, y, z) = (f1(x, y, z), f2(x, y, z)) with

f1(x, y, z) = x exp y + sin z, f2(x, y, z) = x2 + y2 − z2

Then, f(x, y, z) = (f1(x, y, z), f2(x, y, z)). So, we may just focus on functions f :
Rn → R.

Remark 3.2. When we write

f(x, y, z) =

√
x+ y + 1

x− 1

it is understood that x 6= 1. That is the expression of f defines implicitly the domain
of the function. For example, for the above function we need that x+y+1 ≥ 0 and

x 6= 1. So, we assume implicitely that the domain of f(x, y, z) =
√
x+y+1
x−1 is the set

D = {(x, y) ∈ R2 : x+ y ≥ −1, x 6= 1}

Usually we will write f : D ⊂ Rn → R to make explicit the domain of f .

Definition 3.3. Given f : D ⊂ Rn → R we define the graph of f as

G(f) = {(x, y) ∈ Rn+1 : y = f(x), x ∈ D}

Remark that the graph can be drawn only for n = 1, 2.

Example 3.4. The graph of f(x, y) = x2 + y2 is
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Example 3.5. The graph of f(x, y) = x2 − y2 is

Example 3.6. The graph of f(x, y) = 2x+ 3y is

4. Level curves and level surfaces

Definition 4.1. Given f : D ⊂ Rn → R and k ∈ R we define the level surface of
f as the set

Ck = {x ∈ D : f(x) = k}.

If n = 2, the level surface is called a level curve.

Example 4.2. The level curves of f(x, y) = x2 + y2 are
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The arrows point in the direction in which the function f grows.

Example 4.3. The level curves of f(x, y) = x2 − y2 are

The arrows point in the direction in which the function f grows.

Example 4.4. The level curves of f(x, y) = 2x+ 3y are
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The arrows point in the direction in which the function f grows.

5. Limits and continuity

Definition 5.1. Let f : D ⊂ Rn → R and let L ∈ R, p ∈ Rn. We say that

lim
x→p

f(x) = L

if given ε > 0 there is some δ > 0 such that

|f(x)− L| < ε

whenever 0 < ‖x− p‖ < δ.

This is the natural generalization of the concept of limit for one-variable functions
to functions of several variables, once we remark that the distance | | in R is replaced
by the distance ‖ ‖ in Rn). Note that interpretation is the same, i.e., |x− y| is the
distance from x to y in R and ‖x− y‖ is the distance from x to y in Rn.

Proposition 5.2. Let f : Rn → R and suppose there are two numbers, L1 and
L2 that satisfy the above definition of limit. That is, L1 = limx→p f(x) and L2 =
limx→p f(x). Then, L1 = L2

Remark 5.3. The calculus of limits with several variables is more complicated than
the calculus of limits with one variable.

Example 5.4. Consider the function

f(x, y) =

{
(x2 + y2) cos( 1

x2+y2 ) if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

We will show that
lim

(x,y)→(0,0)
f(x, y) = 0

In the above definition of limit we take L = 0, p = (0, 0). We have to show that
given ε > 0 there is some δ > 0 such that

|f(x, y)| < ε
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whenever 0 < ‖(x, y)‖ < δ, where

‖(x, y)‖ =
√
x2 + y2

So, fix ε > 0 and take δ =
√
ε > 0. Suppose that

0 < ‖(x, y)‖ =
√
x2 + y2 < δ =

√
ε

then,

x2 + y2 < ε

and (x, y) 6= (0, 0) so,

|f(x, y)| =
∣∣∣∣(x2 + y2) cos(

1

x2 + y2
)

∣∣∣∣ < ε

∣∣∣∣cos(
1

x2 + y2
)

∣∣∣∣ ≤ ε
where we have used that | cos(z)| ≤ 1 for any z ∈ R. It follows that lim(x,y)→(0,0) f(x, y) =
0.

Remark 5.5. The above definition of limit needs to be modified to take care of the
case in which there are no points x ∈ D (where D is the domain of f) such that
0 < ||p−x|| < δ For example, what is limx→−1 ln(x)? To avoid formal complication,
we will only study limx→p f(x) for the cases in which the set {x ∈ D : 0 < ||p−x|| <
δ} 6= ∅, for every δ > 0

Definition 5.6. : A map σ(t) : (a, b)→ Rn is called a curve in Rn.

Example 5.7. σ(t) = (2t, t+ 1), t ∈ R.

-4 -2 2 4 6

-1

1

2

3

4

Example 5.8. σ(t) = (cos(t), sin(t)), t ∈ R.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Example 5.9. σ(t) = (cos(t), sin(t),
√
t), σ : R→ R3.

-1.0
-0.5

0.0
0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

0

1

2

3

4
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Proposition 5.10. Let p ∈ D ⊂ Rn and f : D ⊂ Rn → R. Consider a curve
σ : [−ε, ε] → D such that σ(0) = p σ(t) 6= p whenever t 6= 0 and limt→0 σ(t) = p.
Suppose, limx→p f(x) = L. Then,

lim
t→0

f(σ(t)) = L

Remark 5.11. The previous proposition is useful to prove that a limit does not exist
or to compute that value of the limit if we know in advance that the limit exists.

But, it cannot be used to prove that a limit exists since one of the hypotheses of
the proposition is that the limit exists.

Remark 5.12. Let f : D ⊂ R2 → R. Let p = (a, b) consider the following particular
curves

σ1(t) = (a+ t, b)

σ2(t) = (a, b+ t)

Note that

lim
t→0

σi(t) = (a, b) i = 1, 2

so, if

lim
(x,y)→(a,b)

f(x, y) = L

then, we must also have

lim
x→a

f(x, b) = lim
y→b

f(a, y) = L

Remark 5.13. Iterated limits
Suppose that lim(x,y)→(a,b) f(x, y) = L and that the following one-dimensional

limits

lim
x→a

f(x, y)

lim
y→b

f(x, y)

exist for (x, y) in a ball B((a, b), R). Define the functions

g1(y) = lim
x→a

f(x, y)

g2(x) = lim
y→b

f(x, y)

Then,

lim
x→a

(
lim
y→b

f(x, y)

)
= lim

x→a
g2(x) = L

lim
y→b

(
lim
x→a

f(x, y)
)

= lim
y→b

g1(y) = L

Again, this has applications to compute the value of a limit if we know beforehand
that it exists. Also, if for some function f(x, y) we can prove that

lim
x→a

lim
y→b

f(x, y) 6= lim
y→b

lim
x→a

f(x, y)

then lim(x,y)→(a,b) f(x, y) does not exist. But, the above relations cannot be used
to prove that lim(x,y)→(a,b) f(x, y) exists.
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Example 5.14. Consider the function,

f(x, y) =

{
x2−y2

x2+y2 if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

Note that

lim
x→0

lim
y→0

f(x, y) = lim
x→0

f(x, 0) = lim
x→0

x2

x2
= 1

but,

lim
y→0

lim
x→0

f(x, y) = lim
y→0

f(0, y) = lim
y→0

−y2

y2
= −1

Hence, the limit

lim
(x,y)→(0,0)

x2 − y2

x2 + y2

does not exist.

Example 5.15. Consider the function,

f(x, y) =

{
xy

x2+y2 if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).
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Note that the iterated limits

lim
x→0

lim
y→0

f(x, y) = lim
x→0

0

x2
= 0

lim
y→0

lim
x→0

f(x, y) = lim
y→0

0

y2
= 0

coincide. But, if we consider the curve, σ(t) = (t, t) and compute

lim
t→0

f(σ(t)) = lim
t→0

f(t, t) = lim
t→0

t2

2t2
=

1

2

does not coincide with the value of the iterated limits. Hence, the limit

lim
(x,y)→(0,0)

xy

x2 + y2

does not exist.

Example 5.16. Let

f(x, y) =

{
y if x > 0
−y if x ≤ 0
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We show first that lim(x,y)→(0,0) f(x, y) = 0. To do this, consider any ε > 0 and

take δ = ε. Now, if 0 < ||(x, y)|| =
√
x2 + y2 < δ then,

|f(x, y)− 0| = |y| =
√
y2 ≤

√
x2 + y2 < δ = ε

Hence,

lim
(x,y)→(0,0)

f(x, y) = 0

But, we remark that limx→0 f(x, y) does not exist for y 6= 0. This so, because if
y 6= 0 then the limits

lim
x→0+

f(x, y) = y

lim
x→0−

f(x, y) = −y

do not coincide. So, limx→0 f(x, y) does not exist for y 6= 0.

Example 5.17. Consider the function,

f(x, y) =

{
x2y

x4+y2 if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

whose graph is the following
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Note that

lim
x→0

lim
y→0

f(x, y) = lim
x→0

f(x, 0) = lim
x→0

0

x4
= 0

but,

lim
y→0

lim
x→0

f(x, y) = lim
y→0

f(0, y) = lim
y→0

0

y2
= 0

Moreover, if we consider the curve σ(t) = (t, t) and compute

lim
t→0

f(t, t) = lim
t→0

f(t, t) = lim
t→0

t3

t4 + t2
= 0

we see that it coincides with the value of the iterated limits.

Hence, one could wrongly conclude that the limit exists and

lim
(x,y)→(0,0)

x2y

x4 + y2
= 0

But this is not true...Because, if we now consider the curve σ(t) = (t, t2) and
compute

lim
t→0

f(t, t2) = lim
x→0

f(t, t2) = lim
t→0

t4

t4 + t4
=

1

2
Therefore, the limit

lim
(x,y)→(0,0)

x2y

x4 + y2

does not exist.

Theorem 5.18 (Algebra of limits). Consider two funcions f, g : D ⊂ Rn → R and
suppose

lim
x→p

f(x) = L1, lim
x→p

g(x) = L2

Then,

(1) limx→p (f(x) + g(x)) = L1 + L2.
(2) limx→p (f(x)− g(x)) = L1 − L2.
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(3) limx→p f(x)g(x) = L1L2.
(4) If a ∈ R then limx→p af(x) = aL1.
(5) If, in addition, L2 6= 0, then

lim
x→p

f(x)

g(x)
=
L1

L2

The following two results will be very useful in proving that a limit exists

Proposition 5.19. Let f, g, h : Rn → R and suppose

(1) g(x) ≤ f(x) ≤ h(x) for every x in some open disc centered at p.
(2) limx→p g(x) = limx→p h(x) = L.

Then,

lim
x→p

f(x) = L

Proposition 5.20. Suppose f is a function of the following type:

(1) A polynomial.
(2) A trigonometric or an exponential function.
(3) A logarithm.
(4) xa, where a ∈ R.

Let p be in the domain of f . Then

lim
x→p

f(x) = f(p)

Example 5.21. Let us compute lim(x,y)→(0,0) f(x, y), where f is the function

f(x, y) =

{
xy√
x2+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

Consider the functions

g(x, y) = 0, h(x, y) =
√
x2 + y2

By Proposition 5.20, we have lim(x,y)→(0,0) g(x, y) = lim(x,y)→(0,0) h(x, y) = 0. On
the other hand,

|f(x, y)| =

∣∣∣∣∣ xy√
x2 + y2

∣∣∣∣∣ ≤
√
x2 + y2

√
x2 + y2√

x2 + y2
=
√
x2 + y2

So, g(x, y) ≤ |f(x, y)| ≤ h(x, y). By proposition 5.19,

lim
(x,y)→(0,0)

|f(x, y)| = 0

Finally, since, −|f(x, y)| ≤ f(x, y) ≤ |f(x, y)|, we apply again proposition 5.19 to
conclude that

lim
(x,y)→(0,0)

f(x, y) = 0
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6. Continuous Functions

Definition 6.1. A function f : D ⊂ Rn → Rm is continuous at a point p ∈ D if
limx→p f(x) = f(p). We say that f is continuous on D if its continuous at every
point p ∈ D.

Remark 6.2. Note that a function f : D ⊂ Rn → Rm is continuous at a point
p ∈ D if and only if given ε > 0 there is some δ > 0 such that if x ∈ p verifies that
‖x− p‖ ≤ δ, then ‖f(x)− f(p)‖ ≤ ε.
Remark 6.3. A function f : D ⊂ Rn → Rm can be written as

f(x) = (f1(x), . . . , fm(x))

We have the following.

Proposition 6.4. The function f is continuous at p ∈ D if and only if for each
i = 1, . . . ,m, the function fi are continuous at p.

Hence, from now on we will concentrate on functions f : D ⊂ Rn → R.

7. Operations with continuous functions

Theorem 7.1. Let D ⊂ Rn and let f, g : D → R be continuous at a point p in D.
Then,

(1) f + g is continuous at p.
(2) fg is continuous at p.
(3) if f(p) 6= 0, then there is some open set U ⊂ Rn such that f(x) 6= 0 for

every x ∈ U ∩D and
g

f
: U ∩D → R

is continuous at p.

Theorem 7.2. Let f : D ⊂ Rn → E (where E ⊂ Rm) be continuous at p ∈ D and
let g : E → Rk be continuous at f(p). Then, g ◦ f : D → Rk is continuous at p.

Remark 7.3. The following functions are continuous,

(1) Polynomials
(2) Trigonometric and exponential functions.
(3) Logarithms, in the domain where is defined.
(4) Powers of funcions, in the domain where they are defined.

8. Continuity of functions and open/closed sets

Theorem 8.1. Let f : Rn → R. Then, the following are equivalent.

(1) f is continuous on Rn.
(2) For each open subset U of R, the set f−1(U) = {x ∈ Rn : f(x) ∈ U} is

open.
(3) For each a, b ∈ R, the set f−1(a, b) = {x ∈ Rn : a < f(x) < b} is open.
(4) For each closed subset V ⊂ R, the set {x ∈ Rn : f(x) ∈ V } is closed.
(5) For each a, b ∈ R, the set f{x ∈ Rn : a ≤ f(x) ≤ b} is closed.

Corollary 8.2. Suppose that the functions f1, . . . , fk : Rn → R are continuous.
Let −∞ ≤ ai ≤ bi ≤ +∞, i = 1, . . . , k. Then,

(1) The set {x ∈ Rn : ai < fi(x) < bi, i = 1, . . . , k} is open.
(2) The set {x ∈ Rn : ai ≤ fi(x) ≤ bi, i = 1, . . . , k} is closed.
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9. Extreme points and fixed points

Definition 9.1. Let f : D ⊂ Rn → R. We say that a point p ∈ D is a

(1) global maximum of f on D if f(x) ≤ f(p), for any other x ∈ D.
(2) global minimum of f on D if f(x) ≥ f(p), for any other x ∈ D.
(3) local maximum of f on D if there is some δ > 0 such that f(x) ≤ f(p),

for every x ∈ D ∩B(p, δ).
(4) local minimum of f on D if there is some δ > 0 such that f(x) ≥ f(p),

for every x ∈ D ∩B(p, δ).

Example 9.2. In the following picture, the point A is a local maximum but not a
global one. The point B is a (local and) global maximum.
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9.8

9.9

10.0

10.1

A B

Theorem 9.3 (Weiestrass’ Theorem). Let D ⊂ Rn be a compact subset of Rn and
let f : D → R be continuous. Then, there are x0, x1 ∈ D such that for any x ∈ D

f(x0) ≤ f(x) ≤ f(x1)

That is, x0 is a global minimum of f on D and x1 is a global maximum of f on
D.

Theorem 9.4 (Brouwer’s Theorem). Let D ⊂ Rn be a non-empty, compact and
convex subset or Rn. Let f : D → D continuous then there is p ∈ D such that
f(p) = p.

Remark 9.5. If f(p) = p, then p is called a fixed point of f .

Remark 9.6. Recall that

(1) A subset of R is convex if and only if it is an interval.
(2) A subset of R is closed and convex if and only if it is a closed interval.
(3) A subset X of R is closed, convex and bounded if and only if X = [a, b].

Example 9.7. Any continuous function f : [a, b]→ [a, b] has a fixed point. Graphi-
cally,
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a b

a
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10. Applications

Example 10.1. Consider the set A = {(x, y) ∈ R2 : x2 +y2 ≤ 2}. Since the function
f(x, y) = x2 + y2 is continuous, the set A is closed. It is also bounded and hence
the set A is compact.

Considerer now the function

f(x, y) =
1

x+ y

Its graphic is

The function f is continuous except in the set X = {(x, y) ∈ R2 : x + y = 0}.
This set intersects A,
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A

X

Taking y = 0, we see that

lim
x→0
x>0

f(x, 0) = +∞ lim
x→0
x<0

f(x, 0) = −∞

and we conclude that f attains neither a maximum nor a minimum on the set A.

Example 10.2. Consider the set B0 = {(x, y) ∈ R2 : xy ≥ 1}. Since the function
f(x, y) = xy is continuous, the set B0 is closed. Since the set B0 is not bounded, it
is not compact.

Example 10.3. How is the set B1 = {(x, y) ∈ R2 : xy ≥ 1, x, y > 0}? Now we
may not use directly the results above. But, we note that

B1 = {(x, y) ∈ R2 : xy ≥ 1, x, y > 0} = {(x, y) ∈ R2 : xy ≥ 1, x, y ≥ 0}

B1

and since the functions f1(x, y) = xy, f2(x, y) = x y f3(x, y) = y are continuous,
we conclude that the set B1 is closed. Consider again the function

f(x, y) =
1

x+ y

Does it attain a maximum or a minimum on the set B1? Note that the function
is continuous in the set B1, we may not apply Weierstrass’ Theorem because B1 is
not compact.
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On the one hand, we see that f(x, y) > 0 in the set B1. In addition, the points
(n, n) for n = 1, 2, . . . belong to the set B1 and

lim
n→+∞

f(n, n) = 0

Hence, given a point p ∈ B1, we may find a natural number n large enough such
that

f(p) > f(n, n) > 0

And we conclude that f does not attain a minimum in the set B1.
The level curves {(x, y) ∈ R2 : f(x, y) = c} of the function

f(x, y) =
1

x+ y

are the straight lines

x+ y =
1

c

Graphically,

c = 1c = 2
c = - 1c = - 1/2

c = - 2

c =  1/2

The arrows point in the direction of growth of f . Graphically we see that f
attains a maximum at the point of tangency with the set B1. This is the point
(1, 1).
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B1

Exercise 10.4. Similarly,

B2 = {(x, y) ∈ R2 : xy ≥ 1, x, y < 0} = {(x, y) ∈ R2 : xy ≥ 1, x, y ≤ 0}
is closed, but it is not compact. Argue that the function

f(x, y) =
1

x+ y

is continuous on that set but it does not attain a maximum. On the other hand, it
attains a minimum at the point (−1,−1).

Exercise 10.5. The sets B3 = {(x, y) ∈ R2 : xy > 1, x, y > 0} and B4 =
{(x, y) ∈ R2 : xy > 1, x, y < 0} are open sets. Why?


