University Carlos III Department of Economics Mathematics II. Final Exam. June 2012

Last Name:		Name:
ID number:	Degree:	Group:

IMPORTANT

- DURATION OF THE EXAM: 2h
- Calculators are **NOT** allowed.
- Scrap paper: You may use the last two pages of this exam and the space behind this page.
- Do NOT UNSTAPLE the exam.
- You must show a valid ID to the professor.
- Read the exam carefully. Each part of the exam counts 1 point. Please, check that there are 10 pages in this booklet

Problem	Points
1	
2	
3	
4	
5	
Total	

(1) Consider the following system of linear equations

$$\left\{ \begin{array}{rrrr} x - by - 2z & = & 1 \\ x - az & = & b \\ x + (2 - b)y & = & 1 \end{array} \right.$$

where $a, b \in \mathbb{R}$.

(a) Classify the system according to the values of a and b.

(b) Solve the above system for the values of a and b for which the system has infinitely many solutions.

Solution:

(a) The augmented matrix of the system is

$$(A|B) = \begin{pmatrix} 1 & -b & -2 & 1 \\ 1 & 0 & -a & b \\ 1 & 2-b & 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & -b & -2 & 1 \\ 0 & b & 2-a & b-1 \\ 1 & 2-b & 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & -b & -2 & 1 \\ 0 & b & 2-a & b-1 \\ 0 & 2 & 2 & 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 & -b & -2 & 1 \\ 0 & 2 & 2 & 0 \\ 0 & b & 2-a & b-1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & -b & -2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & b & 2-a & b-1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & -b & -2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & -a-b+2 & b-1 \end{pmatrix}$$

Looking at the possible ranks of A and comparing with those of (A|B), we can say that if $a+b \neq 2$, then rank $(A) = \operatorname{rank}(A|B) = 3$. In those cases the system is consistent with unique solution.

If a + b = 2 and $b \neq 1$ the system is inconsistent, as $\operatorname{rank}(A) = 2 < rg(A|B) = 3$.

If a + b = 2 and b = 1 the system is undetermined and we will need one parameter to give the solution because rank(A) = 2 = rg(A|B).

(b) The system is undetermined if a = 1, b = 1. For those values, the above system is equivalent to the following one

$$\begin{cases} x - y - 2z = 1\\ y + z = 0 \end{cases}$$

whose solution is $y = -z, x = 1 + z, z \in \mathbb{R}$.

(2) Consider the function

$$f(x,y) = \begin{cases} \frac{x^2 \sqrt{|y|}}{x^2 + y^2} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

- (a) Determine whether the function f is continuous at the point (0,0).
- (b) Compute (if they exist) the partial derivatives of f at the point (0,0). Compute (if it exists) the derivative of f at the point (0,0) according to the vector v = (1,4). ¿Is the function f differentiable at the point (0,0)?

Solution:

(a) Let $(x, y) \neq (0, 0)$, we have

$$|f(x,y)| = \frac{x^2\sqrt{|y|}}{x^2 + y^2} = \frac{x^2}{x^2 + y^2}\sqrt{|y|} \le \sqrt{|y|}$$

so when $(x, y) \neq (0, 0)$,

$$0 \le |f(x,y)| \le \sqrt{|y|}$$

The function $h(x, y) = \sqrt{|y|}$ is continuous and $\lim_{(x,y)\to(0,0)} h(x, y) = 0$. Using Sandwich's theorem we can state that $\lim_{(x,y)\to(0,0)} f(x, y) = 0$, thus the function f is continuous.

(b) The partial derivatives of f at the point (0,0) are

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = \lim_{t \to 0} \frac{0}{t} = 0$$
$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = \lim_{t \to 0} \frac{0}{t} = 0$$

the derivative of f at the point (0,0) in the direction of the vector v = (1,4) is

$$D_v f(0,0) = \lim_{t \to 0} \frac{f(t,4t) - f(0,0)}{t} = \lim_{t \to 0} \frac{2\sqrt{|t|}}{17t}$$

hence it doesn't exist. Therefore, we can conclude that the function is not differentiable at (0, 0).

- (3) Consider the function $f(x,y) = ax^2 + (a+b)y^2 + 2axy + 2$, with $a, b \in \mathbb{R}$
 - (a) Study the concavity and the convexity of the function f according to the values of a and b.
 - (b) For the values a = 1, b = 0, does the function f attain a maximum and/or minimum value in \mathbb{R}^2 ? At what points? (Justify the answer).

Solution:

(a) the Hessian matrix of f is

$$\mathbf{H} f(x,y) = \left(\begin{array}{cc} 2a & 2a \\ 2a & 2(a+b) \end{array}\right)$$

The principal minors are $D_1 = 2a$, $D_2 = 4ab$. The function f is convex if a > 0, $b \ge 0$ and it is concave if a < 0, $b \le 0$. If a = 0 the Hessian matrix is

$$\mathbf{H}\,f(x,y) = \left(\begin{array}{cc} 0 & 0\\ 0 & 2b \end{array}\right)$$

Therefore, it is positive semidefinite if $b \ge 0$, so it is convex and it is negative semidefinite if $b \le 0$ and convave.

(b) Substituting a = 1, b = 0, in the function, it is convex on \mathbb{R}^2 . The critical points are given by the equations

$$2x + 2y = 0, \quad 2y + 2x = 0$$

whose solution is y = -x. Because f is convex and differentiable, the critical points of f are the global minima of f on \mathbb{R}^2 . Therefore, f attains it's minimum value at the points of the form $(x, -x), x \in \mathbb{R}$.

(4) Consider the function

$$f(x,y) = xy^2$$

and the set $A = \{(x, y) \in \mathbb{R}^2 : x + y \le 100, 2x + y \le 120\}.$

- (a) Compute the Kuhn-Tucker equations that determine the extreme points of f in A.
- (b) Compute the solutions of the above Kuhn-Tucker equations.

Solution:

(a) The Lagrangian associated with the problem is

$$L = xy^{2} + \lambda(100 - x - y) + \mu(120 - 2x - y)$$

and the Kuhn-Tucker equations are

$$y^{2} - \lambda - 2\mu = 0$$

$$2xy - \lambda - \mu = 0$$

$$\lambda(100 - x - y) = 0$$

$$\mu(120 - 2x - y) = 0$$

$$x + y \leq 100$$

$$2x + y \leq 120$$

with $\lambda, \mu \geq 0$ for the maxima and $\lambda, \mu \leq 0$ for the minima.

(b) Case 1: $\lambda \neq 0$. Then, x + y = 100, or, y = 100 - x. Thus, 120 - 2x - y = 20 - x. It implies that $\mu(20 - x) = 0$.

Suppose that $\mu \neq 0$. Then, x = 20, y = 80. Subtracting the first two equations, we obtain $\mu = y^2 - 2xy = 3200$. From this we can deduce that $\lambda = y^2 - 2\mu = 0$, which is contrary to $\lambda \neq 0$. Suppose that $\mu = 0$. then, $y^2 = 2xy$. From the first equation we deduce that $y^2 = \lambda \neq 0$. Then, y = 2x, together with x + y = 100, implies x = 100/3, y = 200/3. But, those values don't satisfy $2x + y \leq 120$.

Case 2: $\lambda = 0$. The Kuhn-Tucker equations are

$$y^{2} - 2\mu = 0$$

$$2xy - \mu = 0$$

$$\mu(120 - 2x - y) = 0$$

$$x + y \leq 100$$

$$2x + y \leq 120$$

with $\lambda, \mu \geq 0$ for the maxima and $\lambda, \mu \leq 0$ for the minima.

If $\mu = 0$, then y = 0 we get the solution $y = \mu = \lambda = 0$, $x \le 60$ and those are critical points for both local maxima and local minima. If $\mu \ne 0$, then $y \ne 0$ y 2x + y = 120. From the first two equations we obtain $y^2 = 4xy$. Therefore, y = 4x, together with 2x + y = 120, implies the solution $x = 20, y = 80, \mu = 3200, \lambda = 0$.

(5) Consider the function

$$f(x,y) = x^2 + y^2$$

and the set $A = \{(x, y) \in \mathbb{R}^2 : x - 2y + 6 = 0\}.$

- (a) Compute the Lagrange equations that determine the extreme points of f in A and find their solutions.
- (b) Using the second order conditions, characterize the above solutions of the Lagrange equations as corresponding to maximum or minimum values. Can you justify if any of those points corresponds to a global maximum or minimum? (Justify the answer)

Solution:

(a) The Lagrangian is

$$L = x^{2} + y^{2} - \lambda(x - 2y + 6)$$

and we obtain the Lagrange equations,

$$2x - \lambda = 0$$

$$2y + 2\lambda = 0$$

$$x - 2y + 6 = 0$$

or equivalently,

$$\lambda = 2x$$
$$y + \lambda = 0$$
$$-2y + 6 = 0$$

We need to solve that system of equations. From the first equation we obtain

y

x

$$x = \frac{\lambda}{2}$$

and from the second equation

$$= -\lambda$$

Substituting those in the third one we get

$$\frac{\lambda}{2} + 2\lambda + 6 = 0$$

whose solution is

$$\lambda = \frac{-12}{5}$$

10

Hence,

$$x = \frac{-6}{5}, y = \frac{12}{5}, \lambda = \frac{-12}{5}$$

(b) The Hessian matrix associated with L is

$$\mathbf{H} = \left(\begin{array}{cc} 2 & 0\\ 0 & 2 \end{array}\right)$$

And because $\operatorname{H} L$ is positive definite, the given critical point is a strict local minimum. Furthermore, because the function is convex ($\operatorname{H} f$ is positive definite), we conclude that it is a global minimum.