TEMAS DE MATEMÁTICAS AVANZADAS PARA LA ECONOMÍA

Hoja 8. Ecuaciones Diferenciales (4)
Soluciones

8-1. Clasificar el punto de equilibrio $(0,0)$ de los sistemas siguientes, en términos del parámetro α.
a) $\dot{X}=\left(\begin{array}{cc}\alpha & 0 \\ 6 & 2 \alpha\end{array}\right) X, \quad(\alpha \neq 0)$.
b) $\dot{X}=\left(\begin{array}{cc}\alpha & -3 \\ 3 & \alpha\end{array}\right) X$.

Solución:

a) $p_{A}(\lambda)=(\alpha-\lambda)(2 \alpha-\lambda)=0 \Leftrightarrow \lambda_{1,2}=\alpha, 2 \alpha$. Hence, the system is g.a.s. when $\alpha<0((0,0)$ stable node) and unstable when $\alpha>0((0,0)$ unstable node $)$.
b) $p_{A}(\lambda)=\lambda^{2}-2 \alpha \lambda+\alpha^{2}+9=0 \Leftrightarrow \lambda_{1,2}=\alpha \pm i 3$.

1) $\alpha<0$ attracting spiral; the system is g.a.s.,
2) $\alpha=0$ center; the system is stable, but not g.a.s.,
3) $\alpha>0$ repulsive spiral; unstable system.

8-2. Determinar y clasificar el punto de equilibrio de los siguientes sistemas. En caso de aparecer un punto de silla, encontrar la variedad estable.
a) $\dot{X}=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right) X+\binom{-2}{1}$.
b) $\dot{X}=\left(\begin{array}{ll}2 & -5 \\ 5 & -6\end{array}\right) X+\binom{1}{9}$.

Solución:

a) $\left(x^{0}, y^{0}\right)=(-1,3)$ is a saddle. The stable manifold is the eigenspace associated to the negative eigenvalue, $S(-1)=\{2 x+y=0\}$. In this example where the equilibrium point is not $(0,0)$, to find the initial conditions from which the system converges to $(-1,3)$ it is needed to make a parallel displacement of the stable manifold to the line passing through $(-1,3)$, i.e.

$$
2(x-(-1))+y-3=0 .
$$

Thus, initial conditions $\left(x_{0}, y_{0}\right)$ satisfying $2 x_{0}+y_{0}=-1$ generate trajectories $(x(t), y(t))$ such that $x(t) \rightarrow-1$ and $y(t) \rightarrow 3$ when $t \rightarrow \infty$.
b) $\left(x^{0}, y^{0}\right)=(3,1)$ and $\lambda_{1,2}=-2 \pm i 3$. Since the real part is negative, the equilibrium point is an attractor spiral.

8-3. Estudiar la estabilidad de los siguientes sistemas.

$$
\text { a) }\left\{\begin{array} { l }
{ \dot { x } = e ^ { x } - 1 , } \\
{ \dot { y } = y e ^ { x } . }
\end{array} \quad \text { b) } \left\{\begin{array}{l}
\dot{x}=x^{3}+3 x^{2} y+y, \\
\dot{y}=x\left(1+y^{2}\right) .
\end{array}\right.\right.
$$

Solución: Both are nonlinear systems, so we approach the systems by linear systems. In case a) the only equilibrium point is $(0,0)$. We compute the derivatives

$$
\frac{\partial \dot{x}}{\partial x}=e^{x}, \frac{\partial \dot{x}}{\partial y}=0, \frac{\partial \dot{y}}{\partial x}=y e^{x}, \frac{\partial \dot{y}}{\partial y}=e^{x} .
$$

The Jacobian matrix at $(0,0)$ is $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Clearly, the system is unstable, hence the nonlinear system is also unstable.

Again $(0,0)$ is the only equilibrium point of system b) (notices that the factor $1+y^{2}$ never vanishes). We compute the derivatives

$$
\frac{\partial \dot{x}}{\partial x}=3 x^{2}+6 x y, \frac{\partial \dot{x}}{\partial y}=3 x^{2}+1, \frac{\partial \dot{y}}{\partial x}=1+y^{2}, \frac{\partial \dot{y}}{\partial y}=2 x y .
$$

The Jacobian matrix is $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, with eigenvalues ± 1, so the system is unstable, and the equilibrium point is locally a saddle point.

8-4. The model of Obst ${ }^{1}$ of monetary policy in the presence of an inflation adjustment mechanism is as follows. The quotient M_{d} / M_{s} (money demand/money supply), is denoted by $\mu ; p=\dot{P} / P$ is the inflation rate (P is the price level of the economy); $q=\dot{Q} / Q$ the constant (exogenous) rate of growth of $G D P, Q$, and $m=\dot{M}_{s} / M_{s}$ the monetary expansion rate. The evolution of p follows the Walrasian adjustment mechanism

$$
\dot{p}=h(1-\mu), \quad 0<h<1 \text { a parameter } .
$$

Hence an excess in the monetary supply $M_{s}>M_{d}$, leads to a positive increment in the inflation rate. To stipulate the time evolution of μ we consider the following assumption: monetary demand is proportional to GDP in nominal terms, that is,

$$
M_{d}=a P Q, \quad a>0 \text { constant },
$$

hence

$$
\mu=a \frac{P Q}{M_{s}}
$$

Taking logarithms

$$
\ln \mu=\ln a+\ln P+\ln Q-\ln M_{s}
$$

and taking the derivative with respect to time we get

$$
\frac{\dot{\mu}}{\mu}=\frac{\dot{P}}{P}+\frac{\dot{Q}}{Q}-\frac{\dot{M}_{s}}{M_{s}}=p+q-m
$$

Hence, the system of ODEs in the model of Obst is

$$
\begin{aligned}
& \dot{p}=h(1-\mu), \\
& \dot{\mu}=(p+q-m) \mu .
\end{aligned}
$$

The exercise studies the effect of the monetary policy chosen by the central bank, given by m.
a) Suppose that $m=\bar{m}$ is constant (exogenous and constant monetary expansion rate) and that $\bar{m}>q$. Show that the system has a center.
b) Suppose that $m=\bar{m}-\alpha p$ with $\alpha>0$ (countercyclical conventional monetary policy) and $\bar{m}>q$. Show by means of the phase portrait that the qualitative behavior of the system is similar to (a) above.
c) Suppose that $m=\bar{m}-\alpha \dot{p}$ (Obst's Rule) with $\alpha>0$ and $\bar{m}>q$. Prove that for some values of α the system has a spiral attractor.
d) What do you think about the stabilization properties of the countercyclical rule and Obst's Rule?

Solución:

a) In the case $m=\bar{m}$ constant, the equilibrium point is ($\bar{m}-q, 1$). In equilibrium, money demand equals supply and the inflation rate is given by $\bar{m}-q$. The question is if a constant monetary policy leads to stabilization of inflation and money demand/supply.
The Jacobian matrix at the equilibrium point is

$$
\left(\begin{array}{cc}
0 & -h \\
\mu & p+q-\bar{m}
\end{array}\right)_{p=\bar{m}-q, \mu=1}=\left(\begin{array}{cc}
0 & -h \\
1 & 0
\end{array}\right) .
$$

[^0]The eigenvalues are pure imaginary, hence the equilibrium point is a center of the linearized system. We cannot infer the same behavior for the nonlinear system in this case, see Theorem 6.35. However, the system is explicitly solvable, because

$$
\frac{\dot{p}}{\dot{\mu}}=\frac{d p}{d \mu}=\left(\frac{h}{p+q-\bar{m}}\right)\left(\frac{1-\mu}{\mu}\right)
$$

is a separable ODE. Integrating in the usual way, we get

$$
\frac{p^{2}}{2}-(\bar{m}-q) p=h(\ln \mu-\mu)+C
$$

where C is constant. The solution curves are shown below. They surround the equilibrium point, thus the model has an oscillatory behavior around it. The equilibrium is a center

b) Consider now $m(p)=\bar{m}-\alpha p$. This policy is called countercyclical since the monetary expansion decrease if the inflation rate increases. The equilibrium point now is $\left(\frac{\bar{m}-q}{1+\alpha}, 1\right)$. The inflation rate is smaller than with m constant. However, the situation is much as above. The equilibrium is again a center, both for the linear and the nonlinear systems. The phase portrait is qualitatively similar to figure above.
c) Consider now Obst' Rule, $m(\dot{p})=\bar{m}-\alpha \dot{p}$. Now the monetary expansion rate responds not only with respect to changes in the inflation rate, but in its instantaneous variation (a more sensitive rule). We get the system

$$
\begin{aligned}
& \dot{p}=h(1-\mu), \\
& \dot{\mu}=(p+q-\bar{m}+\alpha h(1-\mu)) \mu .
\end{aligned}
$$

The equilibrium point is again $(\bar{m}-q, 1)$ and the Jacobian matrix at it is

$$
\left(\begin{array}{cc}
0 & -h \\
1 & -\alpha h
\end{array}\right) .
$$

It is easy to check that the eigenvalues

$$
\lambda_{1,2}=\frac{-\alpha h \pm \sqrt{\alpha^{2} h^{2}-4 h}}{2}
$$

have negative real part for any $h, \alpha>0$. Hence, the nonlinear system is locally asymptotically stable. If $\alpha^{2} h^{2}-4 h<0$ the equilibrium is a stable spiral point.
d) Monetary policies based in exogenous monetary expansion or in countercyclical specifications do not stabilize inflation and money demand. However, Obst's Rule does.

[^0]: ${ }^{1}$ N. P. Obst (1978) "Stabilization policy with an inflation adjustment mechanism". Quarterly Journal of Economics, May, pp. 355-359.

