TEMAS DE MATEMATICAS AVANZADAS PARA LA ECONOMIA
Hoja 8. Ecuaciones Diferenciales (4)

Soluciones

8-1. Clasificar el punto de equilibrio (0,0) de los sistemas siguientes, en términos del pardmetro «.

. a 0
a) X = < 6 2 >X, (a #0).
b) X = ( ?f _a?’ )X.
Solucidn:
a) pa(A) = (= A)(2a — X) = 0 & A2 = o, 2a. Hence, the system is g.a.s. when o < 0 ((0,0)
stable node) and unstable when a > 0 ((0,0) unstable node).

b) pa(A) =A% =20 +a? +9=0& N2 = +i3.

a < 0 attracting spiral; the system is g.a.s.,

1)
2) a = 0 center; the system is stable, but not g.a.s.,
3) a > 0 repulsive spiral; unstable system.

8-2. Determinar y clasificar el punto de equilibrio de los siguientes sistemas. En caso de aparecer un
punto de silla, encontrar la variedad estable.

a)Xz(i })m(‘f).
b)X_<§ :2>X+(é>.

Solucidn:
a) (z°,9°) = (—1,3) is a saddle. The stable manifold is the eigenspace associated to the negative
eigenvalue, S(—1) = {2z + y = 0}. In this example where the equilibrium point is not (0,0),
to find the initial conditions from which the system converges to (—1, 3) it is needed to make a
parallel displacement of the stable manifold to the line passing through (—1, 3), i.e.

2z — (=1)) +y—3=0.

Thus, initial conditions (zg,yo) satisfying 2z¢ + yo = —1 generate trajectories (x(t),y(t)) such
that z(t) - —1 and y(¢) — 3 when t — oc.

b) (29 4%) = (3,1) and A1 5 = —2 £ i3. Since the real part is negative, the equilibrium point is an
attractor spiral.

8-3. Estudiar la estabilidad de los siguientes sistemas.

& =e"—1 i =22 +32%y+y
a 5 ’ b ) ’
){y = ye”. ){y = z(1 +9?).

Solucién: Both are nonlinear systems, so we approach the systems by linear systems. In case a)
the only equilibrium point is (0,0). We compute the derivatives
01 01 0y Y
i:ex’ j:oj i:y6x7 7y:
ox oy ox dy
The Jacobian matrix at (0,0) is A = ( (1) ? > Clearly, the system is unstable, hence the nonlinear

er.

system is also unstable.
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Again (0,0) is the only equilibrium point of system b) (notices that the factor 1 + 3? never
vanishes). We compute the derivatives

ot 9 ot 9 ay 5 0y
3 6 =3 1 =1 , — = 2xy.
97 T + 0zy, oy x” + 1, Ey +y oy Ty
The Jacobian matrix is A = (1) é ), with eigenvalues 41, so the system is unstable, and the

equilibrium point is locally a saddle point.

8-4. The model of Obst' of monetary policy in the presence of an inflation adjustment mechanism is
as follows. The quotient My/Ms (money demand/money supply), is denoted by p; p = P/P is the
inflation rate (P is the price level of the economy); ¢ = Q/Q the constant (exogenous) rate of growth

of GDP, @, and m = MS/MS the monetary expansion rate. The evolution of p follows the Walrasian
adjustment mechanism

p=h(1l—p), 0 < h <1 a parameter.

Hence an excess in the monetary supply Mg > My, leads to a positive increment in the inflation
rate. To stipulate the time evolution of u we consider the following assumption: monetary demand
1is proportional to GDP in nominal terms, that is,

My = aPQ, a > 0 constant,

hence
_ _PQ
=9,

Taking logarithms
Inpg=Ina+InP+1In@ — In M,

and taking the derivative with respect to time we get

p P Q M,
—=—+—=—"—F—=pt+gqg—m.
woPQ M PTH

Hence, the system of ODFEs in the model of Obst is

p="h(l—p),
fr=(p+q—m)pu.

The exercise studies the effect of the monetary policy chosen by the central bank, given by m.

a) Suppose that m = M is constant (exogenous and constant monetary expansion rate) and that
m > q. Show that the system has a center.

b) Suppose that m = m—ap with a > 0 (countercyclical conventional monetary policy ) and m > q.
Show by means of the phase portrait that the qualitative behavior of the system is similar to (a)
above.

¢) Suppose that m =m — ap (Obst’s Rule) with a > 0 and m > q. Prove that for some values of
« the system has a spiral attractor.

d) What do you think about the stabilization properties of the countercyclical rule and Obst’s Rule?

Solucién:

a) In the case m = m constant, the equilibrium point is (77 — ¢, 1). In equilibrium, money demand
equals supply and the inflation rate is given by m — q. The question is if a constant monetary
policy leads to stabilization of inflation and money demand/supply.

The Jacobian matrix at the equilibrium point is

(o —h ) _(0 —h)
poPHa=TN ) =t 10

IN. P. Obst (1978) “Stabilization policy with an inflation adjustment mechanism”. Quarterly Journal of Economics, May,
pp. 355-359.



b)

3

The eigenvalues are pure imaginary, hence the equilibrium point is a center of the linearized
system. We cannot infer the same behavior for the nonlinear system in this case, see Theorem
6.35. However, the system is explicitly solvable, because

i ) (50
poo dp ptqg—m I

is a separable ODE. Integrating in the usual way, we get

2
p __
5 —(M—gp=hlnp—p)+C,
where C'is constant. The solution curves are shown below. They surround the equilibrium point,

thus the model has an oscillatory behavior around it. The equilibrium is a center

Consider now m(p) = m—ap. This policy is called countercyclical since the monetary expansion
decrease if the inflation rate increases. The equilibrium point now is (%, 1). The inflation rate
is smaller than with m constant. However, the situation is much as above. The equilibrium is
again a center, both for the linear and the nonlinear systems. The phase portrait is qualitatively
similar to figure above.

Consider now Obst’ Rule, m(p) = m — ap. Now the monetary expansion rate responds not only
with respect to changes in the inflation rate, but in its instantaneous variation (a more sensitive

rule). We get the system
fr=_(p+q—m+ah(l—p)u.

The equilibrium point is again (7 — ¢, 1) and the Jacobian matrix at it is

0 —h
1 —ah J°
It is easy to check that the eigenvalues
—ah +Va?h? — 4h
2
have negative real part for any h,a > 0. Hence, the nonlinear system is locally asymptotically
stable. If a?h? — 4h < 0 the equilibrium is a stable spiral point.

Monetary policies based in exogenous monetary expansion or in countercyclical specifications
do not stabilize inflation and money demand. However, Obst’s Rule does.
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