TEMAS DE MATEMÁTICAS AVANZADAS PARA LA ECONOMÍA

Hoja 8. Ecuaciones Diferenciales (4)

8-1. Clasificar el punto de equilibrio $(0,0)$ de los sistemas siguientes, en términos del parámetro α.
a) $\dot{X}=\left(\begin{array}{cc}\alpha & 0 \\ 6 & 2 \alpha\end{array}\right) X, \quad(\alpha \neq 0)$.
b) $\dot{X}=\left(\begin{array}{cc}\alpha & -3 \\ 3 & \alpha\end{array}\right) X$.

8-2. Determinar y clasificar el punto de equilibrio de los siguientes sistemas. En caso de aparecer un punto de silla, encontrar la variedad estable.
a) $\dot{X}=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right) X+\binom{-2}{1}$.
b) $\dot{X}=\left(\begin{array}{ll}2 & -5 \\ 5 & -6\end{array}\right) X+\binom{1}{9}$.

8-3. Estudiar la estabilidad de los siguientes sistemas.

$$
\text { a) }\left\{\begin{array} { l }
{ \dot { x } = e ^ { x } - 1 , } \\
{ \dot { y } = y e ^ { x } . }
\end{array} \quad \text { b) } \left\{\begin{array}{l}
\dot{x}=x^{3}+3 x^{2} y+y, \\
\dot{y}=x\left(1+y^{2}\right) .
\end{array}\right.\right.
$$

8-4. The model of Obst ${ }^{1}$ of monetary policy in the presence of an inflation adjustment mechanism is as follows. The quotient M_{d} / M_{s} (money demand/money supply), is denoted by $\mu ; p=\dot{P} / P$ is the inflation rate (P is the price level of the economy); $q=\dot{Q} / Q$ the constant (exogenous) rate of growth of GDP, Q, and $m=\dot{M}_{s} / M_{s}$ the monetary expansion rate. The evolution of p follows the Walrasian adjustment mechanism

$$
\dot{p}=h(1-\mu), \quad 0<h<1 \text { a parameter. }
$$

Hence an excess in the monetary supply $M_{s}>M_{d}$, leads to a positive increment in the inflation rate. To stipulate the time evolution of μ we consider the following assumption: monetary demand is proportional to GDP in nominal terms, that is,

$$
M_{d}=a P Q, \quad a>0 \text { constant },
$$

hence

$$
\mu=a \frac{P Q}{M_{s}} .
$$

Taking logarithms

$$
\ln \mu=\ln a+\ln P+\ln Q-\ln M_{s}
$$

and taking the derivative with respect to time we get

$$
\frac{\dot{\mu}}{\mu}=\frac{\dot{P}}{P}+\frac{\dot{Q}}{Q}-\frac{\dot{M}_{s}}{M_{s}}=p+q-m .
$$

Hence, the system of ODEs in the model of Obst is

$$
\begin{aligned}
& \dot{p}=h(1-\mu), \\
& \dot{\mu}=(p+q-m) \mu .
\end{aligned}
$$

The exercise studies the effect of the monetary policy chosen by the central bank, given by m.
a) Suppose that $m=\bar{m}$ is constant (exogenous and constant monetary expansion rate) and that $\bar{m}>q$. Show that the system has a center.

[^0]b) Suppose that $m=\bar{m}-\alpha p$ with $\alpha>0$ (countercyclical conventional monetary policy) and $\bar{m}>q$. Show by means of the phase portrait that the qualitative behavior of the system is similar to (a) above.
c) Suppose that $m=\bar{m}-\alpha \dot{p}$ (Obst's Rule) with $\alpha>0$ and $\bar{m}>q$. Prove that for some values of α the system has a spiral attractor.
d) What do you think about the stabilization properties of the countercyclical rule and Obst's Rule?

[^0]: ${ }^{1}$ N. P. Obst (1978) "Stabilization policy with an inflation adjustment mechanism". Quarterly Journal of Economics, May, pp. 355-359.

