Name: _____

Question:	1	2	3	4	5	Total
Points:	20	15	10	15	10	70
Score:						

Instructions:

- DURATION OF THE EXAM: 2h.
- Calculators are **NOT** allowed.
- DO NOT UNSTAPLE the exam.
- You must show a valid ID to the professor if required.
- Read the exam carefully. The exam has 5 questions, for a total of 70 points.
- Remember that for a complex number z = a + ib, the module is $\rho = |z| = \sqrt{a^2 + b^2}$, and the argument θ is the angle such that $\tan \theta = b/a$.

Table of usual trigonometric values

θ	$\sin \theta$	$\cos \theta$	an heta
0	0	1	0
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$ $\frac{\pi}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	1	0	∞

Consider a market where only one good is traded where the demand at time t is $D_t = 100 - P_t$ and the supply at time y is $S_t = P_{t-2}$, where P_{t-2} and P_t are the prices at times t-2 and t, respectively.

- (a) (5 points) Find a difference equation, linear and of order 2, satisfied by the equilibrium prices. Note: The equilibrium prices satisfy $D_t = S_t$ for all t.
- (b) (5 points) Find the general solution of the difference equation of part (a) above.
- (c) (5 points) Find the solution of the difference equation of part (a) above which satisfies the initial conditions $P_0 = 40, P_1 = 20.$
- (d) (5 points) Fin the maximum and the minimum equilibrium prices.

Consider the following linear system of difference equations

$$\begin{pmatrix} x_{t+1} \\ y_{t+1} \\ z_{t+1} \end{pmatrix} = \begin{pmatrix} -1 & 0 & \frac{3}{2} \\ 1 & \frac{1}{2} & -1 \\ -\frac{1}{2} & 0 & 1 \end{pmatrix} \begin{pmatrix} x_t \\ y_t \\ z_t \end{pmatrix} + \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}.$$

- (a) (5 points) Find the equilibrium point and classify it (unstable, stable, locally asymptotically stable or globally asymptotically stable).
- (b) (5 points) Find the general solution of the system.
- (c) (5 points) Find the solution of the system which satisfies the initial conditions $x_0 = 0$, $y_0 = 8$ and $z_0 = 2$.

Page 4 of 6

3

Answer the following questions.

(a) (5 points) Find the general solution of the ODE

$$(1+t)x' + x = t(t+1).$$

(b) (5 points) Find the solution of the ODE

$$(1+t)x' + x = t(t+1)$$

which satisfies x(0) = x(1).

Find the general solution of the ODE

$$x^{\prime\prime}-x^{\prime}=e^{at},$$

where $a \in \mathbb{R}$, in each of the following cases:

- (a) (5 points) When a = 0.
- (b) (5 points) When a = 1.
- (c) (5 points) When $a \neq 0$ and $a \neq 1$.

Consider the following system of differential equations

$$\left\{\begin{array}{rrrr} x' &=& -2x-y\\ y' &=& x-2y \end{array}\right.$$

Find and classify the equilibrium point. Skecht the phase diagram.