TOPICS OF ADVANCED MATHEMATICS FOR ECONOMICS

Sheet 8. Differential Equations (4)

Solutions

8-1. Classify the equilibrium point (0,0) of the following systems, in terms of the parameter α .

(a)
$$\dot{X} = \begin{pmatrix} \alpha & 0 \\ 6 & 2\alpha \end{pmatrix} X$$
, $(\alpha \neq 0)$.
(b) $\dot{X} = \begin{pmatrix} \alpha & -3 \\ 3 & \alpha \end{pmatrix} X$.

Solution:

- (a) $p_A(\lambda) = (\alpha \lambda)(2\alpha \lambda) = 0 \Leftrightarrow \lambda_{1,2} = \alpha, 2\alpha$. Hence, the system is g.a.s. when $\alpha < 0$ ((0,0) stable node) and unstable when $\alpha > 0$ ((0,0) unstable node).
- (b) $p_A(\lambda) = \lambda^2 2\alpha\lambda + \alpha^2 + 9 = 0 \Leftrightarrow \lambda_{1,2} = \alpha \pm i3.$
 - (i) $\alpha < 0$ attracting spiral; the system is g.a.s.,
 - (ii) $\alpha = 0$ center; the system is stable, but not g.a.s.,
 - (iii) $\alpha > 0$ repulsive spiral; unstable system.
- 8-2. Find and classify the equilibrium point of the following systems. In the case of a saddle, find the stable manifold.

(a)
$$\dot{X} = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} X + \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$
.
(b) $\dot{X} = \begin{pmatrix} 2 & -5 \\ 5 & -6 \end{pmatrix} X + \begin{pmatrix} 1 \\ 9 \end{pmatrix}$.

Solution:

(a) $(x^0, y^0) = (-1, 3)$ is a saddle. The stable manifold is the eigenspace associated to the negative eigenvalue, $S(-1) = \{2x + y = 0\}$. In this example where the equilibrium point is not (0, 0), to find the initial conditions from which the system converges to (-1, 3) it is needed to make a parallel displacement of the stable manifold to the line passing through (-1, 3), i.e.

$$2(x - (-1)) + y - 3 = 0.$$

Thus, initial conditions (x_0, y_0) satisfying $2x_0 + y_0 = -1$ generate trajectories (x(t), y(t)) such that $x(t) \to -1$ and $y(t) \to 3$ when $t \to \infty$.

- (b) $(x^0, y^0) = (3, 1)$ and $\lambda_{1,2} = -2 \pm i3$. Since the real part is negative, the equilibrium point is an attractor spiral.
- 8-3. Study the stability of the following systems.

a)
$$\begin{cases} \dot{x} = e^x - 1, \\ \dot{y} = y e^x. \end{cases}$$
 b) $\begin{cases} \dot{x} = x^3 + 3x^2y + y, \\ \dot{y} = x(1+y^2). \end{cases}$

Solution: Both are nonlinear systems, so we approach the systems by linear systems. In case a) the only equilibrium point is (0,0). We compute the derivatives

$$\frac{\partial \dot{x}}{\partial x} = e^x, \ \frac{\partial \dot{x}}{\partial y} = 0, \ \frac{\partial \dot{y}}{\partial x} = y e^x, \ \frac{\partial \dot{y}}{\partial y} = e^x.$$

The Jacobian matrix at (0,0) is $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Clearly, the system is unstable, hence the nonlinear system is also unstable.

Again (0,0) is the only equilibrium point of system b) (notices that the factor $1 + y^2$ never vanishes). We compute the derivatives

$$\frac{\partial \dot{x}}{\partial x} = 3x^2 + 6xy, \ \frac{\partial \dot{x}}{\partial y} = 3x^2 + 1, \ \frac{\partial \dot{y}}{\partial x} = 1 + y^2, \ \frac{\partial \dot{y}}{\partial y} = 2xy.$$

The Jacobian matrix is $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, with eigenvalues ± 1 , so the system is unstable, and the equilibrium point is locally a saddle point.

8-4. The model of $Obst^1$ of monetary policy in the presence of an inflation adjustment mechanism is as follows. The quotient M_d/M_s (money demand/money supply), is denoted by μ ; $p = \dot{P}/P$ is the inflation rate (P is the price level of the economy); $q = \dot{Q}/Q$ the constant (exogenous) rate of growth of GDP, Q, and $m = \dot{M}_s/M_s$ the monetary expansion rate. The evolution of p follows the Walrasian adjustment mechanism

$$\dot{p} = h(1-\mu), \qquad 0 < h < 1$$
 a parameter.

Hence an excess in the monetary supply $M_s > M_d$, leads to a positive increment in the inflation rate. To stipulate the time evolution of μ we consider the following assumption: monetary demand is proportional to GDP in nominal terms, that is,

$$M_d = aPQ, \qquad a > 0 \ constant,$$

hence

$$\mu = a \frac{PQ}{M_s}.$$

Taking logarithms

$$\ln \mu = \ln a + \ln P + \ln Q - \ln M_s,$$

and taking the derivative with respect to time we get

$$\frac{\dot{\mu}}{\mu} = \frac{\dot{P}}{P} + \frac{\dot{Q}}{Q} - \frac{\dot{M}_s}{M_s} = p + q - m.$$

Hence, the system of ODEs in the model of Obst is

$$\dot{p} = h(1 - \mu),$$

$$\dot{\mu} = (p + q - m)\mu$$

The exercise studies the effect of the monetary policy chosen by the central bank, given by m.

- (a) Suppose that $m = \overline{m}$ is constant (exogenous and constant monetary expansion rate) and that $\overline{m} > q$. Show that the system has a center.
- (b) Suppose that $m = \overline{m} \alpha p$ with $\alpha > 0$ (countercyclical conventional monetary policy) and $\overline{m} > q$. Show by means of the phase portrait that the qualitative behavior of the system is similar to (a) above.
- (c) Suppose that $m = \overline{m} \alpha \dot{p}$ (Obst's Rule) with $\alpha > 0$ and $\overline{m} > q$. Prove that for some values of α the system has a spiral attractor.
- (d) What do you think about the stabilization properties of the countercyclical rule and Obst's Rule?

Solution:

(a) In the case $m = \overline{m}$ constant, the equilibrium point is $(\overline{m} - q, 1)$. In equilibrium, money demand equals supply and the inflation rate is given by $\overline{m} - q$. The question is if a constant monetary policy leads to stabilization of inflation and money demand/supply. The Jacobian matrix at the equilibrium point is

$$\left(\begin{array}{cc} 0 & -h \\ \mu & p+q-\overline{m} \end{array}\right)_{p=\overline{m}-q,\mu=1} = \left(\begin{array}{cc} 0 & -h \\ 1 & 0 \end{array}\right).$$

¹N. P. Obst (1978) "Stabilization policy with an inflation adjustment mechanism". *Quarterly Journal of Economics*, May, pp. 355–359.

The eigenvalues are pure imaginary, hence the equilibrium point is a center of the linearized system. We cannot infer the same behavior for the nonlinear system in this case, see Theorem 6.35. However, the system is explicitly solvable, because

$$\frac{\dot{p}}{\dot{\mu}} = \frac{dp}{d\mu} = \left(\frac{h}{p+q-\overline{m}}\right) \left(\frac{1-\mu}{\mu}\right)$$

is a separable ODE. Integrating in the usual way, we get

$$\frac{p^2}{2} - (\overline{m} - q)p = h(\ln \mu - \mu) + C_{1}$$

where C is constant. The solution curves are shown below. They surround the equilibrium point, thus the model has an oscillatory behavior around it. The equilibrium is a center

- (b) Consider now $m(p) = \overline{m} \alpha p$. This policy is called countercyclical since the monetary expansion decrease if the inflation rate increases. The equilibrium point now is $(\frac{\overline{m}-q}{1+\alpha}, 1)$. The inflation rate is smaller than with m constant. However, the situation is much as above. The equilibrium is again a center, both for the linear and the nonlinear systems. The phase portrait is qualitatively similar to figure above.
- (c) Consider now Obst' Rule, $m(\dot{p}) = \overline{m} \alpha \dot{p}$. Now the monetary expansion rate responds not only with respect to changes in the inflation rate, but in its instantaneous variation (a more sensitive rule). We get the system

$$\dot{p} = h(1-\mu),$$

 $\dot{\mu} = (p+q-\overline{m}+\alpha h(1-\mu))\mu.$

The equilibrium point is again $(\overline{m} - q, 1)$ and the Jacobian matrix at it is

$$\left(\begin{array}{cc} 0 & -h \\ 1 & -\alpha h \end{array}\right).$$

It is easy to check that the eigenvalues

$$\lambda_{1,2} = \frac{-\alpha h \pm \sqrt{\alpha^2 h^2 - 4h}}{2}$$

have negative real part for any $h, \alpha > 0$. Hence, the nonlinear system is locally asymptotically stable. If $\alpha^2 h^2 - 4h < 0$ the equilibrium is a stable spiral point.

(d) Monetary policies based in exogenous monetary expansion or in countercyclical specifications do not stabilize inflation and money demand. However, Obst's Rule does.