
TOPICS OF ADVANCED MATHEMATICS FOR ECONOMICS

Sheet 7. Differential Equations (3)

Solutions

7-1. Answer the following questions:
(a) Form the homogeneous linear ODEs from their characteristic equation.

(i) r2 − 3r + 5 = 0;
(ii) r(r + 2) = 0.

(b) Form the homogeneous linear ODEs from the roots of their characteristic equation.
(i) r1 = 1, r2 = 4;

(ii) r1 = 3− 4i, r2 = 3 + 4i.
(c) Form the homogeneous linear ODEs from their general solution.

(i) C1e
t + C2e

−2t;
(ii) C1e

−2t + C2te
−2t;

(iii) e−t/2(C1 sin 2t+ C2 cos 2t).

Solution:
(a) (i) x′′ − 3x′ + 5x = 0.

(ii) x′′ + 2x′ = 0.
(b) (i) (r − 1)(r − 4) = r2 − 5r + 4⇒ x′′ − 5x′ + 4x = 0.

(ii) (r− (3 + 4i))(r− (3− 4i)) = r2− (3 + 4i)r− (3− 4i)r+ (3 + 4i)(3− 4i) = r2− 6r+ 25⇒
x′′ − 6x′ + 25x = 0.

(c) (i) The roots are 1 and −2, thus the characteristic equation is (r−1)(r+2) = 0, from which
x′′ + x′ − 2x = 0.

(ii) The root is −2 (double), thus the characteristic equation is (r + 2)2 = 0, from which
x′′ + 4x′ + 4x = 0.

(iii) The roots are complex conjugates, with real part −1/2 and imaginary part 2, thus the
characteristic equation is(

r −
(
−1

2
+ 2i

))(
r −

(
−1

2
− 2i

))
= r2 + r +

17

4
= 0⇒ x′′ + x′ +

17

4
x = 0.

7-2. Find the solution of the following equations.
(a) x′′ − ax = t, where a ∈ R,
(b) x′′ − 2x+ x = sin t, x(0) = x′(0) = 1.
(c) x′′ − 3x′ + 2x = (t2 + t)e3t,

Solution:
(a) Let us consider first the special case a = 0. The equation reduces to ẍ = t. Integrating,

ẋ = 1
2 t

2 + C1, and integrating again, x(t) = 1
6 t

3 + C1t+ C2, for arbitrary constants C1, C2.

Now, for a 6= 0 let us find a particular solution of the complete equation. It will of the form
xp(t) = At+B. Plugging this into the equation we find

−a(At+B) = t⇒ A = −1

a
, B = 0.

Hence xp(t) = −t/a. To find xh we solve the characteristic equation r2−a = 0 and distinguish
two cases.

(i) a > 0. Then xh(t) = C1e
√
at + C2e

−
√
at and

x(t) = C1e
√
at + C2e

−
√
at − t

a
.

(ii) a < 0. Then xh(t) = C1 cos (t
√
−a) + C2 sin (t

√
−a) and

x(t) = C1 cos (t
√
−a) + C2 sin (t

√
−a)− t

a
.

1
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(b) The general solution is et(C1 + C2t) + cos t
2 and the solution satisfying the initial conditions is

et
(

1

2
+
t

2

)
+

cos t

2
.

(c) The general homogeneous solution is xh(t) = C1e
2t + C2e

t and a particular solution of the
complete equation is xp(t) = (0.5t2 − t+ 1)e3t. Hence

x(t) = xh(t) + xp(t) = C1e
2t + C2e

t + (0.5t2 − t+ 1)e3t.

7-3. An equation of the form
t2x′′ + atx′ + bx = 0,

where a and b are real constants, is called an Euler equation. Show that the substitution of the
independent variable s = ln t transforms an Euler equation into an equation with constant coefficients
for the new dependent variable y(s) = x(es). As an application, find the solution of the equation
t2x′′ − 4tx′ − 6x = 0 for t > 0.

Solution: The equation
t2x′′ + atx′ + bx = 0

transforms into a linear one by a change of “time” t = es, or s = ln t. Notice that t′(s) = es = t.
Let us define a new function y(s) = x(t) = x(es). We have, applying the chain rule

y′(s) = x′(t)t′ = x′(t)t,

y′′(s) = (x′(t)t)′ = x′′(t)t′t+ x′(t)t′ = x′′(t)t2 + x′(t)t = x′′(t)t2 + y′(s).

Thus, we have found tx′ = y′ and t2x′′ = y′′ − y′. Substituting into the equation we have

y′′(s)− y′(s) + ay′(s) + by(s) = 0,

which is a linear equation for y(s).
The equation t2x′′ − 4tx′ − 6x = 0 has a = −4 and b = −6, thus it transforms into

y′′ − 5y′ − 6y = 0.

The solution is

y(s) = C1e
6s + C2e

−s ⇒ x(t) = y(ln t) = C1e
6 ln t + C2e

− ln t = C1t
6 + C2t

−1.

7-4. Suppose that a risky asset X grows at an average exponential rate of α but it is subjected to random
fluctuations of instantaneous volatility σ. Let V (x) be the value of a security that collects x dt euros
continuously when the price of the stock is X = x. Supposing that the risk free interest rate in the
economy is r < α, it can be shown by arbitrage reasonings that the value of the stock V (x) satisfies
the equation the Euler equation

σ2

2
x2V ′′(x) + axV ′(x)− rV (x) = x.

Find the general solution and pick up the economically sensible solution among these.

Solution: Let us write the equation as

x2V ′′(x) + axV ′(x)− bV (x) = cx,

where

a =
2α

σ2
,

b =
2r

σ2
> 0,

c =
1

2σ2
.

By the problem above, the change s = lnx (x = es) transforms the equation into

(1) y′′(s) + (a− 1)y′(s)− by(s) = ces.
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The general solution of the homogeneous equation is

C1e
r1s + C2e

r2s,

since the roots of the characteristic equation r2 + (a− 1)r − b = 0 are both real and distinct,

r1,2 =
1

2
(1− a±

√
(a− 1)2 + 4b ).

A particular solution we guess the form Aes, so that substituting into (1) we have

A(1 + (a− 1)− b) = c⇒ A =
c

a− b
=

1

α− r
.

We have found thus that

y(s) = C1e
r1s + C2e

r2s +
1

α− r
es.

Turning back to the original variables

V (x) = y(lnx) = C1x
r1 + C2x

r2 +
1

α− r
x.

Finally, to select the solution that makes sense, notice that it is plausible that if X doubles its value
to x, then the value V (2x) = 2V (x). Since that in general both r1 and r2 are 6= 0, we need to
impose C1 = C2 = 0, so that

V (x) =
1

α− r
x

should be the “correct” value.

7-5. Let the demand and supply functions for a single commodity be given by

D(t) = 42− 4P (t)− 4Ṗ (t) + P̈ (t),

S(t) = −6 + 8P (t).

We have assumed that the demand depends not only on current price, P , but also in expectations
about the first and second variation of prices, given by Ṗ and P̈ , respectively. Assuming that market
clears at every time t, i.e. D(t) = S(t), determine the path of P . Determine a linear relation

between initial conditions P (0) and Ṗ (0) such that the solution is bounded.

Solution: In equilibrium,

42− 4P (t)− 4Ṗ (t) + P̈ (t) = −6 + 8P (t)

thereby

P̈ (t)− 4Ṗ (t)− 12P (t) = −48.

The solution is P (t) = C1e
6t +C2e

−2t + 4. For having bounded solutions it is needed C1 = 0. Since

P (0) = C1 + C2 + 4,

Ṗ (0) = 6C1 − 2C2,

imposing C1 = 0 we get

2P (0) + Ṗ (0) = 8.

7-6. An entomologist is studying two neighboring populations of red and black ants. She has estimated
that the number of black ants is approximately 60, 000 and that of red ants is 15, 000. The ants begin
fighting and our entomologist observe that at any time, the number of ants killed of one population
is proportional to the number of ants alive of the other population. However, red ants are more
aggressive than black ants in such a way that their effectiveness in the fight is quadruple that of
black ants. The observer receives a call to her mobile phone and must leave the observation, coming
back to the camp. She knows that these two species of ants fight until one of them is annihilated. She
conjecture that, given that the initial population of ants is 4:1 in favor of blacks, but the effectiveness
is 4:1 for reds, both populations will practically extinct at once. However, when she returns next day
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to the anthill, the situation is quite different. Could you help our hero to understand what happened
by answering the following questions?
(a) Which is the survival species?
(b) How many ants of the survival species remain alive?
(c) Which should be the initial proportion of both populations in order that both species become

extinct at once?
Hint: Denoting x(t) = black ants at time t, y(t) = red ants at time t (both in thousands), justify

why the interaction between ants can be given by

ẋ(t) = −4ky(t),

ẏ(t) = −kx(t),

with k > 0 a constant which is the fight effectiveness of black ants. This system can be converted
into a second order ODE for x(t) alone (or for y(t)). Then, solve and find the paths of x(t) and
y(t), knowing that x(0) = 60 and y(0) = 15.

Solution: The system

ẋ(t) = −4ky(t),

ẏ(t) = −kx(t),

can be analyzed in the following way. Write dx = ẋ and dy = ẏ and divide both equations to obtain

dx

dy
= 4

y

x
⇒ x dx− 4y dy = 0.

This is an exact equation that can be solved to get

x2

2
− 2y2 = C.

Using the initial conditions we can determine C:

x2(0)

2
− 2y2(0) = C ⇒ C =

602

2
− 2 · 152 = 1350.

Hence the evolution of both populations of ants is linked by

x2(t)

2
− 2y2(t) = 1350.

(a) Notice that x(t) = 0 is impossible, but y(t) = 0 is possible, hence the survival species is that
of black ants.

(b) Plugging y = 0 we find

x2 = 2700⇒ x ≈ 51.962 thousand black ants, or 51,962.

(c) It is impossible that x(s) = y(s) = 0 at some finite s, but it could be limt→∞ x(t) =
limt→∞ y(t) = 0.

To see this, let us find the time–path of the populations by means of a second order differential
equation. Deriving in ẋ = −4ky we have

ẍ = −4kẏ = 4k2x.

This equation holds whenever y > 0, because if y = 0, then ẍ = ẋ = 0. The solution is

x(t) = C1e
2kt + C2e

−2kt.

Thus,

y(t) = −1

2
C1e

2kt +
1

2
C2e

−2kt.

If we choose initial populations x0, y0 such that C1 = 0, then the limit is 0. Thus we need

x0 = C1 + C2,

y0 = −C1

2
+
C2

2
.
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Plugging C1 = 0 and eliminating C2 we find x0 = 2y0, that is, it should be half red ants than black
ants.

To complete this problem, let us find the solution with the data given above. The constants are
determined with the initial conditions, x(0) = 60 and ẋ(0) = −4ky(0) = −60k. Therefore

60 = C1 + C2,

−60k = 2kC1 − 2kC2.

Solving, we get C1 = 15 and C2 = 45. Hence

x(t) = 15e2kt + 45e−2kt (y(t) > 0).

On the other hand y = − 1
4k ẋ, thus

y(t) = 7.5e2kt − 22.5e−2kt.

Red ants become extinct at time

t̂ =
ln 3

k
≈ 0.275

k
.

The evolution of black ants is thus

x(t) =

{
15e2kt + 45e−2kt, if 0 ≤ t ≤ t̂;
51.962, if t ≥ t̂.

7-7. Consider the functional equation

(2) g(x) + α

∫ x

0
(x− t)f(t) dt = f(x), for all x ≥ 0,

where g : [0,∞) −→ R is a given function, of class C2, α 6= 0 is a given constant and the function
f : [0,∞) −→ R is the unknown function, a solution of class C2 to the functional equation.

(a) Show that if f is a solution of (2), then it satisfies the second order ODE with initial values:

f ′′(x)− αf(x) = g′′(x), f(0) = g(0), f ′(0) = g′(0).

(b) Using (a) above, find the candidate solution f in the following cases1:
(i) g(x) = ax+ b, a, b ∈ R (there are two cases to consider, α > 0 and α < 0.)

(ii) |α| = 1 and g(x) = eax (for α = 1 consider the cases a = 1, a = −1 and |a| 6= 1.)

Solution: (a) If we derive the functional equation (for this we need to use Leibniz’s Rule of
derivation of parametric integrals), we obtain that the function f must satisfy

g′(x) + (x− x)f(x) + α

∫ x

0

(
∂

∂x
(x− t)f(t)

)
dt = f ′(x),

that is,

(3) g′(x) + α

∫ x

0
f(t) dt = f ′(x).

Deriving this equation, we obtain

g′′(x) + αf(x) = f ′′(x), or f ′′(x)− αf(x) = g′′(x).

On the other hand, from the functional equation we get the initial condition

f(0) = g(0) + α

∫ 0

0
(x− t)f(t) dt = g(0)

and from (3),

f ′(0) = g′(0) + α

∫ 0

0
f(t) dt = g′(0).

1It can be proved that it is indeed the only solution of class C2 of (2)
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(bi) Note that g′′(x) = 0, thus the ODE satisfied by f is homogeneous of constant coefficients

f ′′(x)− αf(x) = 0.

The roots of the characteristic polynomial are real if α > 0, ±
√
α, and complex if α < 0, ±i

√
|α|.

Thus, the general solution of the ODE is

C1e
√
αx + C2e

−
√
αx, if α > 0,(4)

C1 cos
√
|α|x+ C2 sin

√
|α|x, if α < 0.(5)

The initial conditions are f(0) = g(0) = b and f ′(0) = g′(0) = a, thus we have to solve the systems

(if α > 0)

{
b = C1 + C2

a = C1
√
α− C2

√
α

(if α < 0)

{
b = C1

a =
√
|α|C2

to isolate the suitable solutions from the general solutions given in (4)-(5) above.
In the case α > 0 the solution is(

b
√
α+ a

2
√
α

)
e
√
αx +

(
b
√
α− a

2
√
α

)
e−
√
αx

and in the case α < 0 the solution is

b cos
√
|α|x+

a√
|α|

sin
√
|α|x.

(bii) The ODE is non-homogeneous:

f ′′(x)− αf(x) = eax.

• When α = 1 and a = 1, a particular solution is of the form: Axex. Plugging this choice into
the ODE we get A(x+ 2)ex −Axex = ex, that is, A = 1

2 . Hence, the general solution is

C1e
x + C2e

−x +
1

2
xex.

The initial conditions are f(0) = g(0) = 1 and f ′(0) = g′(0) = 1, hence we set the system:{
1 = C1 + C2

1 = C1 − C2 + 1
2 .

Solving for C1 and C2 gives the solution to (2)

f(x) =
1

4
ex +

3

4
e−x +

1

2
xex.

• When α = 1 and a = −1, a particular solution is of the form: Axe−x. Plugging this choice into
the ODE we get A(x− 2)e−x −Axe−x = e−x, that is, A = −1

3 . Hence, the general solution is

C1e
x + C2e

−x − 1

3
xe−x.

The initial conditions are f(0) = g(0) = 1 and f ′(0) = g′(0) = −1, hence we set the system:{
1 = C1 + C2

−1 = C1 − C2 − 1
3 .

Solving for C1 and C2 gives the solution to (2)

f(x) =
1

6
ex +

5

6
e−x − 1

3
xe−x.

• When α = 1 and |a| 6= 1, a particular solution is of the form: Aeax. Plugging this choice into
the ODE we get Aa2eax −Aeax = eax, that is, A = 1

a2−1 . Hence, the general solution is

C1e
x + C2e

−x +
1

a2 − 1
ex.
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The initial conditions are f(0) = g(0) = 1 and f ′(0) = g′(0) = a, hence we set the system:{
1 = C1 + C2 + 1

a2−1
a = C1 − C2 + a

a2−1 .

Solving for C1 and C2 gives the solution to (2) (complete the details!).
• When α = −1, a particular solution is Aeax (for all a) as in the previous case and we obtain

now A = 1
a2+1

. Hence, the general solution is

C1 cos
√
|α|x+ C1 sin

√
|α|x+

1

a2 + 1
eax.

The initial conditions are again f(0) = g(0) = 1 and f ′(0) = g′(0) = a, hence we set the
system: {

1 = C1 + 1
a2+1

a = −C2 + a
a2+1

.

Solving for C1 and C2 gives the solution to (2) (complete the details!).

7-8. Let u(x) be the utility obtained from wealth x. Function u is strictly increasing (u′ > 0) and concave
(u′′ < 0). The Arrow–Pratt measure of absolute risk aversion, r(x), depends on wealth level, and it
is the defined as the proportional change in the marginal utility, u′(x)

r(x) = −u
′′(x)

u′(x)
.

(a) Find all functions with Constant Absolute Risk Aversion (CARA utility functions for short),
i.e. with r(x) ≡ a > 0.

(b) Find all functions with Arrow–Pratt index inversely proportional to wealth, i.e. r(x) = a/x,
a > 0. These functions are called of Constant Relative Risk Aversion (CRRA utility functions).
Hint: Transform the second order equation with non–constant coefficients to a first order
equation for v(x) = u′(x). Solve the first order equation you obtain for v and then find u by
direct integration. Possibly you need to distinguish two cases, a 6= 1 and a = 1.

Solution:
(a) The ODE for u is u′′ + au′ = 0, which general solution is u(x) = C1e

−ax + C2.

(b) The ODE for u is u′′ + a
xu
′ = 0, that can be converted into a first order ODE for v = u′,

v′ +
a

x
v = 0 or v′ = −a

x
v.

It is a separable ODE
dv

v
= −adx

x
.

Integrating we have
ln v = −a lnx+ C1 = lnx−a + C1,

where C1 is a constant, thus
v(x) = C1x

−a,

where we have renamed the constant. Since u′ = v, we have u(x) =
∫
v dx = C1

x1−a

1−a +C2, if a 6= 1,

and u(x) = C1 lnx+ C2, if a = 1.


