
TOPICS OF ADVANCED MATHEMATICS FOR ECONOMICS

Sheet 6. Differential Equations (2)

Solutions

6-1. Solve the following first order ODEs.

(a) ẋ = t3

x3
.

(b) ẋ = x3

t3
.

(c) y′ =
√
x+1
y2

, with y(0) = 1.

(d) (t+ 3x) dt+ (t− 20) dx = 0.
(e) (2xy − cosx) dx+ (x2 − 1) dy = 0, with y(0) = 0.

(f) ẋ+ 2tx = cos te−t
2
, with x(0) = 0.

(g) ẋ+ x
t = e−t

2
.

Solution:
(a) (Separable) x4 − t4 = C;
(b) (Separable) x2 − t2 = Ct2x2;

(c) (Separable) y3−2
√

(x+ 1)3 = C; from y(0) = 1 we get C = −1, so that y3−2
√

(x+ 1)3 +1 =

0⇒ y(t) = 3

√
2
√

(x+ 1)3 − 1;

(d) (Not exact) An integration factor is

µ(t) = e
∫

2
t−20 dt = eln (t−20)2 = (t− 20)2,

since
Px −Qt

Q
=

2

t− 20
= µ(t) is independent of x.

multiplying the equation by µ(t) the equation is now exact. Hence, there is a function V
such that Vx = (t − 20)3; integrating we get V (t, x) = (t − 20)3x + g(t) and deriving with
respect to t, Vt = 3(t− 20)2x+ g′(t), which has to be equal to (t− 20)2(t+ 3x), hence we get
g(t) =

∫
t(t−20)2dt. Taking parts u = t and dv = (t−20)2, one gets g(t) = 1

12(t−20)3(3t+20).

Hence, V (t, x) = (t − 20)3x + g(t) = (t − 20)3x + 1
12(t − 20)3(3t + 20), and the solution is

(t− 20)3(12x+ 3t+ 20) = C;
(e) (Exact) sinx− y(x2 − 1) = C; from y(0) = 0 we get C = 0, so that y(x) = sinx

x2−1 .

(f) (Linear) Take µ(t) = e
∫
2t = et

2
. We know (see the notes of the course)

x(t) =
1

et2

∫
cos te−t

2
et

2
dt = e−t

2
(sin t+ C).

Now, the initial condition implies C = 0.

(g) (Linear) Take µ(t) = e
∫

1
t = t. We know (see the notes of the course)

x(t) =
1

t

∫
te−t

2
dt =

1

t

(
−1

2
e−t

2
+ C

)
.

6-2. The equation
ẋ+ a(t)x = b(t)xn

is a Bernoulli equation. It is a linear equation for n = 0 or n = 1, but it is not linear for n 6= 0, 1.
Suppose that this is the case.

(a) Prove that the change of variable y = x1−n transforms the equation into a linear equation for
y(t).

(b) Solve ẋ+ 2x = x3, x(0) = 2.

Solution:
1



2

(a)

ẏ = (1− n)x−nẋ = (1− n)x−n(−ax+ bxn) = (1− n)(−ax1−n + b) = (1− n)(−ay + b).

The linear equation for y(t) is

ẏ + (1− n)a(t)y = (1− n)b(t),

that can be solved with the habitual technique, choosing µ(t) = e(1−n)
∫
a(t) dt.

(b) By the item above, the equation is transformed into

ẏ + 4y = 1

thus, µ(t) = e4t and

(ẏ + 4y)e4t = e4t

implies, after integration

ye4t =

∫
e4t dt =

1

4
e4t + C ⇒ y(t) =

1

4
+ Ce−4t.

Turning back to the original variable y = x−2 we get

x−2(t) =
1

4
+ Ce−4t ⇒ x(t) = ± 1√

1
4 + Ce−4t

.

6-3. Draw the phase diagrams of each of the following equations, find the equilibrium points and study
their stability.

(a) ẋ = g1(x) = (x+ 1)(x− 1)2(x− 2).
(b) ẋ = g2(x) = (x+ 1)(x− 1)(x− 2)

Solution: Equilibrium points are constant solutions of the autonomous differential equation
ẋ = f(x), that is, solutions of f(x) = 0, because this implies ẋ = 0. In both cases −1, 1 and 2 are
the only equilibrium points. To analyze the qualitative behavior of the equation we study the sign
of the functions g1 and g2.
(a) The graph of g1 shows that it is strictly positive in (−∞, 1) and strictly negative in (−1, 2)

(except at 1), hence any solution x(t) with initial condition x0 in the interval (−∞,−1) ((−1, 2))
is strictly increasing (decreasing), thus x(t) converges to −1. This equilibrium point is locally
asymptotically stable. For the point 1, we see that any solution starting in the interval (−1, 2)
is strictly decreasing (x0 6= 1), thus for initial conditions −1 < x0 < 1, the solution converges to
−1, as we already know, and for initial conditions 1 < x0 < 2 it converges to 1; the equilibrium
point is unstable. A similar analysis shows that 2 is also an unstable point.

(b) The points −1 and 2 are unstable and 1 is locally asymptotically stable: any solution with
initial condition in the interval (−1, 2) converges to 1.
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Graph of g1(x) = (x+ 1)(x− 1)2(x− 2) Graph of g2(x) = (x+ 1)(x− 1)(x− 2)

6-4. Suppose that the population y of a certain species of fish in a given area of the ocean is described by
the logistic equation

ẏ = r
(

1− y

K

)
y.

The resource is used for food. Suppose that the rate at which fish are caught, E(y), is proportional
to the population y. Thus, we assume that E(y) = Ey, with E a positive constant. Then the logistic
equation is replaced by

ẏ = r
(

1− y

K

)
y − Ey.

This equation is known as Schaefer model
(a) Show that if E < r, then there are two equilibrium points, y1 = 0, y2 > 0;
(b) Show that y1 is unstable and y2 is asymptotically stable.
(c) A sustainable yield Y of the fishery is a rate at which fish can be caught indefinitely. It is

defined as Ey2. Find Y as a function of the effort E and graph the function (it is known as
the yield–effort curve).

(d) Determine E so as to maximize Y and thereby find the maximum sustainable yield Ym.

Solution:
(a) Solving ẏ = 0 we find y1 = 0 and y2 =

(
1− E

r

)
K > 0.

(b) The function f(y) = r
(
1− y

K

)
y − Ey is positive in the interval (0, y2), hence the solutions

starting in this interval are increasing and depart from 0 (the fish does not extinguish). On
the other hand, f is negative in (y2,∞), hence the population of fish decreases to y2 in this
interval. See the figure below.

(c) Y = Ey2 = E
(
1− E

r

)
K. Y (E) is a concave parabola with roots E = 0 and E = r, that is,

the sustainable yield is 0 both when there is no captures or when the effort rate equals the
intrinsic growth rate of the species.

(d) The effort that maximizes Y is obtained from (notice that Y is a concave function of E, hence
critical points of Y are automatically global maximum of Y ).

∂Y

∂E
=

(
1− 2

E

r

)
K = 0,

hence

Em =
r

2
and the maximum sustainable yield is

Ym = Emy2 =
r

2

(
1− Em

r

)
K = K

r

4
.
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6-5. Consider the following growth model of Haavelmo. The output in the economy is given by a Cobb–
Douglas production function with constant returns to scale

Y = F (K,L) = AKaL1−a, 0 < a < 1,

where K is capital stock and L is level of employment; the constant A > 0, but we will take A = 1.
It is supposed that the rate of growth of employment is not constant, but given by

(1)
L̇

L
= α− β L

Y
= α− β 1

Y/L
, α, β > 0.

thus, the rate of growth of employment is an increasing function of per capita income (output), Y/L.
Notice that the capital stock, K, is considered constant. Plugging Y into (1) we get the ODE

L̇ = αL− βL
1+a

Ka
, L(0) = L0 > 0.

(a) Find the equilibrium points (if any) and draw the phase diagram of the ODE.
(b) Study the asymptotic behavior of the solution.

Solution:
(a) L̇ = 0 admits two solutions: L0

1 = 0 and L0
2 = α

βKa , where K is the constant stock of capital.

The trajectories grow when L(α−β La

Ka ) > 0 and decrease otherwise, that is, when L > 0, they

grow when L(t) < L0
2 and decreases when L(t) > L0

2.
(b) By the item above, L = 0 is unstable and every trajectory with L(0) > 0 converges to L0

2 = α
βKa .

This is the long run value of the labor force in this economy.

6-6. Five college students with the flu return after Christmas Holidays to an isolated campus of 2500
students. If the rate at which this virus spreads is proportional to the number of infected students y
and to the number not infected 2500− y, solve the initial value problem

ẏ = ky(2500− y), y(0) = 5

to find the number of infected students after t days if 25 students have the virus after one day. How
many students have the flu after five days? Determine the number of days required for half the
campus to be infected.

Solution: The equation

ẏ = ky(a− y)

is separable (a = 2500). To find the solution we separate variables and integrate as follows

dy

y(a− y)
= k dt,∫

dy

y(a− y)
= k dt = kt+ C ′, C ′ constant∫

1

ay
+

1

a(a− y)
dy = kt+ C ′,

ln
y

a− y
= a(kt+ C ′),

y

a− y
= Ceakt, where C = eaC

′
,(2)

from which

y(t) =
aCeakt

1 + Ceakt
=

2500Ce2500kt

1 + Ce2500kt
.

The initial condition gives from (2) C = 5
2500−5 = 1

499 ≈ 0.002004 and y(1) = 25 is again used in

(2) to determine the constant k:

25

2500− 25
=

1

499
e2500k ⇒ k =

1

2500
ln

499

99
≈ 0.000647.
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The solution is thus,

y(t) =
5.01002e1.61749t

1 + 0.002004e1.61749t
.

Now,
y(5) ≈ 2167 students.

For half the campus to be infected the time elapsed must satisfy y(t̂) = 1250. To find this t̂, we use
again (2) to get

1250

2500− 1250
= Ceakt̂ ⇒ t̂ =

1

ak
ln

1

C
≈ 3.84 days.

6-7. Some diseases are spread largely by carriers, individuals who can transmit the disease, but who
exhibit no evert symptoms. Let x and y, respectively, denote the proportion of susceptible and
carriers in the population. Suppose that carriers are identified and removed from the population at
a rate β > 0, hence

ẏ = −βy.
Suppose also that the disease spreads at a rate proportional to the product xy, so

ẋ = αxy, α > 0.

(a) Find y(t) with initial condition y(0) = y0.
(b) Use the result in part (a) to find x(t) with initial condition x(0) = x0.
(c) Find the proportion of the population that escapes the epidemic by finding the limiting value of

x as t→∞.


