TOPICS OF ADVANCED MATHEMATICS FOR ECONOMICS – 2020/2021

Sheet 2. Difference Equations (1)

Solutions

- 2-1. Classify the following difference equations
 - (a) $x_{t+1} = x_t^2 e^t$;
 - (b) $x_{t+1} = x_t e^t$;
 - (c) $x_{t+1} = 3.2x_t(1 0.25x_t);$
 - (d) $x_{t+1} x_t = -\frac{4}{3}x_t;$
 - (e) $x_{t+1}(2+3x_t) = 4x_t;$
 - (f) $x_{t+2} = 3x_{t+1} x_t + t;$
 - (g) $x_{t+4} x_{t+3} = \sqrt[3]{x_{t+1}}$.

Solution:

- (a) first-order, non-linear, non-autonomous;
- (b) first-order, linear, non-autonomous;
- (c) first-order, non-linear, autonomous;
- (d) first-order, linear, autonomous, with constant coefficients;
- (e) first-order, non-linear, autonomous;
- (f) second-order, linear, non-autonomous;
- (g) fourth-order, non-linear, autonomous
- 2-2. Check that the following sequences are solution of the corresponding difference equation
 - (a) $x_t = 2^t$; $x_{t+2} = x_{t+1} + 2x_t$;
 - (b) $x_t = \frac{t(t+1)}{2}; x_{t+1} = x_t + t + 1;$ (c) $x_t = \cos \pi t; x_{t+1} = -x_t.$

Solution:

Note that

- (a) $x_{t+1} + 2x_t = 2^{t+1} + 22^t = 22^{t+1} = 2^{t+2} = x_{t+2};$ (b) $x_t + t + 1 = \frac{t(t+1)}{2} + t + 1 = \frac{t(t+1)+2(t+1)}{2} = \frac{(t+1)(t+2)}{2} = x_{t+1}.$ (c) $-x_t = -\cos \pi t = \cos (\pi t + \pi) = \cos \pi (t+1) = x_{t+1}.$

2-3. Consider the difference equation $x_{t+1} = \sqrt{x_t - 1}$ with $x_0 = 5$. Compute x_1, x_2 and x_3 . What about x_4 ?

Solution: $x_1 = \sqrt{5-1} = 2$, $x_3 = \sqrt{2-1} = 1$, $x_4 = \sqrt{1-1} = 0$ and $x_5 = \sqrt{0-1}$ has no sense. This illustrate the importance of taking into consideration the domain of function f that defines the recursion. For the recursion be well defined, it is necessary to find an interval [a, b] such that $f([a, b]) \subset [a, b]$. This is impossible for this difference equation.

2-4. Find the solutions of the following difference equations with the given values of x_0 :

- (a) $x_{t+1} = 2x_t + 4, x_0 = 1;$
- (b) $x_{t+1} = -0.5x_t + 3, x_0 = 1;$
- (c) $2x_{t+1} + 3x_t + 2 = 0, x_0 = -1;$
- (d) $x_{t+1} x_t = -\frac{4}{3}x_t, x_0 = 3.$

Study the long run behavior of the solutions.

Solution: We know that the solution of the equation $x_{t+1} = ax_t + b$, $a, b \in \mathbb{R}$ with initial condition x_0 is given by

$$x_t = a^t (x_0 - x^0) + x^0$$
, where $x^0 = \frac{b}{1 - a}$,

when $a \neq 1$, and $x_t = x_0 + tb$ when a = 1. We will apply these formulas to solve the difference equations above.

- (a) Here a = 2 and b = 4, thus $x^0 = 4/(1-2) = -4$ and then $x_t = 52^t 4$ diverges to $+\infty$;
- (b) Here a = -0.5 and b = 3, thus $x^0 = 3/(1+0.5) = 2$ and then $x_t = -(-0.5)^t + 2$ converges to 2;
- (c) Here a = -1.5 and b = -1, thus $x^0 = -1/(1+1.5) 0.4$ and then $x_t = -0.6(-1.5)^t 0.4$ oscillates, does not converge;
- (d) Here a = -1/3 and b = 0, thus $x^0 = 0$ and then $x_t = 3(-1/3)^t$ converges to 0.

2-5. The income Y_t evolves according to the equation

$$Y_t = C_t + I_t,$$

where I_t denotes investment and C_t is consumption. Supposing that $C_t = mY_t + c$, with $0 \le m < 1, c > 0$, and that $I_t = I$ is constant, find a difference equation for income Y_t , solve it, and study the long run behavior of the solution.

Solution: To find a difference equation for income Y_t , substitute C_t into the equation for Y_t to get

$$Y_{t+1} = mY_t + c + I.$$

Given Y_0 , the solution is (see problem above for the expression of the solution of a linear first-order difference equation)

$$Y_t = \frac{c+I}{1-m} + m^t \left(Y_0 - \frac{c+I}{1-m}\right).$$

As we can see, Y_t converges to $\frac{c+I}{1-m}$ as $t \to \infty$.

- 2-6. Let S_0 denotes an initial sum of money. There are two basic methods for computing the interest earned in a period, for example, one year:
 - (a) S_0 earns simple interest at rate r if each period the interest equals a fraction r of S_0 .
 - (b) S_0 earns compound interest at rate r if each period the interest equals a fraction r of the sum accumulated at the beginning of that period.

Find a difference equation for the two models above, and find the solution.

Solution:

With S_t denoting the amount of capital at period t, we get:

(a) $S_{t+1} = S_t + rS_0$. The solution of this first-order linear equation is

$$S_t = S_0(1+tr).$$

(b) $S_{t+1} = S_t + rS_t$. This is a geometrical sequence

$$S_t = (1+r)^t S_0.$$

- 2-7. Given demand and supply for the cobweb model as follows, find the intertemporal equilibrium price, and determine whether the equilibrium is stable:
 - (a) $Q_d = 18 3P$, $Q_s = -3 + 4P$;
 - (b) $Q_d = 22 3P$, $Q_s = -2 + P$; (c) $Q_d = 16 6P$, $Q_s = 6P 5$;

Solution: Recall that if $Q_d = \alpha - \beta P$ and $Q_s = -\gamma + \delta P$, then the solution converges to the equilibrium price $(\alpha + \gamma)/(\beta + \delta)$ iff $\delta/\beta < 1$.

- (a) $Q_d = 18 3P$, $Q_s = -3 + 4P$. Here $\delta = 4$, $\beta = 3$, $\delta/\beta = 4/3$, thus P_t does not converges.
- (b) $Q_d = 22 3P$, $Q_s = -2 + P$; Here $\delta = 1$, $\beta = 3$, $\delta/\beta = 1/3$, thus P_t converges to $P^0 = 6$.
- (c) $Q_d = 16 6P$, $Q_s = 6P 5$; Here $\delta = 6$, $\beta = 6$, $\delta/\beta = 1$, thus $P_t = P_0$ for every t.
- 2-8. In the cobweb model, suppose that the market clearance still holds in each period, $Q_{d,t} = Q_{s,t}$, but that the the supply function is determined not by the price at the previous period, $Q_{s,t} = S(P_{t-1})$, but by the expected price at period t:

$$Q_{s,t} = -\gamma + \delta P_t^*$$

Sellers form expectations about the price according to the following adaptive rule:

$$P_{t+1}^* = P_t^* + \eta (P_t - P_t^*), \qquad 0 < \eta \le 1,$$

where η is an expectation-adjustment parameter.

- (a) Give an economic interpretation to the preceding equation;
- (b) Is the cobweb model a particular case of the present model?
- (c) Find a difference equation for this model;
- (d) Find the trajectory of price. Is this path necessarily oscillatory? Can it be oscillatory? Under what circumstances?
- (e) Show that the time path P_t , if oscillatory, will converge only if $1 2/\eta < -\delta/\beta$. As compared with the cobweb model without adaptive expectations, does the present model have a wider or narrower range for the stability-inducing values of $-\delta/\beta$?

Solution:

(a) The equation

$$P_{t+1}^* - P_t^* = \eta (P_t - P_t^*)$$

means that sellers revise their previous expectations of "normal" price in each period in proportion to the difference between actual price and what was previously considered to be "normal".

- (b) When $\eta = 1$ it is the cobweb model.
- (c) From the equality $Q_{d,t} = \alpha \beta P_t = -\gamma + \delta P_t^* = Q_{s,t}$ we solve for P_t^* to get

$$P_t^* = \frac{1}{\delta} (\alpha + \gamma - \beta P_t),$$

and then

$$P^*_{t+1} = \frac{1}{\delta}(\alpha + \gamma - \beta P_{t+1}).$$

Substituting P_t^* and P_{t+1}^* into (1) and regrouping terms we find

$$P_{t+1} = \left(1 - \eta - \frac{\eta\delta}{\beta}\right)P_t + \frac{\eta(\alpha + \gamma)}{\beta}.$$

(d) The solution of the difference equation of item above is

$$P_t = \frac{\alpha + \gamma}{\beta + \delta} + \left(1 - \eta - \frac{\eta\delta}{\beta}\right)^t \left(P_0 - \frac{\alpha + \gamma}{\beta + \delta}\right), \qquad t = 0, 1, 2, \dots$$

The path is oscillatory iff

$$1 - \eta - \frac{\eta \delta}{\beta} < 0.$$

It is obvious that choosing η small enough, the above quantity is positive, thus the path is not necessarily oscillatory. The path is oscillatory iff

$$\frac{1}{1+\frac{\delta}{\beta}} < \eta \le 1$$

(e) As proved in the item above, the path is oscillatory iff (2) holds. It will converge whenever

$$-1 < 1 - \eta - \frac{\eta \delta}{\beta} < 0,$$

or, rearranging terms, whenever

$$\frac{\delta}{\beta} < \frac{2}{\eta} - 1.$$

In the traditional cobweb model, the condition of stability is $\delta/\beta < 1$. The possibility of stability is much improved when adaptive expectations are assumed. For a numerical example, suppose that $\delta = 2$, $\beta = 1$ and $\eta = 1/4$. While $\delta/\beta = 2$ and thus there is no stability in the traditional cobweb model, we have $\frac{\delta}{\beta} = 2 < 7 = \frac{2}{\eta} - 1$ and in the adaptive model we still have convergence.

(1)

(2)