
TOPICS OF ADVANCED MATHEMATICS FOR ECONOMICS

Sheet 4. Difference Equations (3)

Solutions

4-1. Prove the equivalence of the two following assertions:
(a) The quadratic equation λ2 − pλ+ q = 0 has roots satisfying |λ| < 1;
(b) |p| < 1 + q and q < 1 ( Jury condition).

Solution: The function f(λ) = λ2 − pλ+ q is a convex parabola. Let us distinguish two different cases.
• Complex roots. This happens when q > p2/4 (so q > 0). The roots are

λ1,2 =
1

2

(
p± i

√
4q − p2

)
,

with modulus |λ1,2| = 1
2

√
p2 + 4q − p2 =

√
q. Hence (b) implies (a). Now, to prove the reverse, suppose

that (a) holds. Then, q < 1. On the other hand, as f(λ) > 0 for all λ, f(1) = 1 − p + q > 0 and
f(−1) = 1 + p+ q > 0. These inequalities are equivalent to |p| < 1 + q, hence (a) implies (b).

• Real roots. This happens when q ≤ p2/4. Note in the drawing below that λ1,2 ∈ (−1, 1) if and only if
f(1) = 1 − p + q > 0, f(−1) = 1 + p + q > 0, f ′(−1) = 2 − p > 0 and f ′(1) = 2 + p < 0. The first two
inequalities give |p| < 1 + q and the second ones |p| < 2. They are equivalent to |p| < 1 + q and q < 1.

- λ

6

f(λ)

−1 +1

4-2. Find the interval of values of the parameter a for which the system(
xt+1

yt+1

)
=

(
a − 1

2

2 1
2

)(
xt
yt

)
is globally asymptotically stable. Find the stable manifold (if possible) for the cases a = −5/3 and a = 5/2.

Solution: We will apply the Jury condition proved in the problem above. The characteristic polynomial
of the matrix of the system is

pA(λ) = λ2 − (a+
1

2
)λ+ 1 +

a

2
.

Here, p = a+ 1
2 and q = 1 + a

2 . The roots are smaller than 1 in module iff |p| < 1 + q and q < 1. The second
inequality gives

1 +
a

2
< 1⇒ a < 0.

The first inequality can be decomposed into

a+
1

2
< 2 +

a

2
⇒ a < 3

and

−
(
a+

1

2

)
< 2 +

a

2
⇒ a > −5

3
.

Thus, the system is g.a.s. iff − 5
3 < a < 0.

1
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To answer the other questions, suppose first that a = −5/3. In this case the eigenvalues are −1 and −1/6.
The stable manifold is the eigenspace S(−1/6). It is easy to find

S(−1/6) = {(x, y) : 3x+ y = 0}.

Thus, trajectories with initial conditions 3x0 +y0 = 0 converge to the equilibrium point (0, 0). When a = 5/2
there is a double eigenvalue, λ = 3/2 > 1, thus there is no stable manifold.

4-3. Suppose that a firm starts activity with 100 machines of the same age. After 2 years, machines become obsolete
and must be replaced for a new one. Moreover, it is known that 11% of the machines of 1 year will fail and
must be also replaced. Write down the equations of the dynamical system involved and the initial condition.

Solution: Denote by xt the percentage of machines of age 0 at time t, yt the percentage of machines of
age 1 at time t and zt the percentage of machines of age 2 at time t. The dynamics is

xt+1 = zt + 0.11yt,

yt+1 = xt,

zt+1 = yt − 0.11yt = 0.89yt.

The matrix of the system is  0 0.11 1
1 0 0
0 0.89 0

 .

4-4. Consider the following deterministic version of a model of inequality transmission across generations of Gary
Solon1. Parents invest It−1 into the child’s human capital ht, with effect ht = θ ln It−1 + gt, where θ > 0 and
gt is human endowment the child receives independently of parent’s investment (genetic inheritance). Assume
that gt = δ + λgt−1, 0 < λ < 1. Lifetime income of the child is given by ln yt = µ+ pht.
(a) Interpret the coefficients θ, λ and p.
(b) Assuming that parents’ investment is a positive constant fraction of their income, It−1 = ekyt−1, k ≤ 0,

write down a second order difference equation for ln yt.
(c) Show that in this model the log of income of the child is positively related with the parents’ log of income,

but inversely related with the grandfather’s log of income.
(d) Show that the model never shows an oscillating behavior.
(e) Find the general solution when λ = γ and show in this case that the income converges to an equilibrium.

Solution:
(a) θ marginal product for human capital investment; λ heritability coefficient; p earnings return to human

capital.
(b) Let zt = ln yt. After plugging both human capital and the investment into the equation for ln yt we get

zt = µ∗ + γzt−1 + pgt,

where µ∗ = µ+ γk and γ = θp. Lagging the equation one period we get

zt−1 = µ∗ + γzt−2 + pgt−1.

Multiplying this equation by λ and subtracting to the former equation we obtain

zt = µ∗(1− λ) + pδ + (γ + λ)zt−1 − γλzt−2.

(c) γ + λ > 0 and −γλ < 0.
(d) The characteristic equation is

r2 − (γ + λ)r + γλ = 0.

The discriminant is (γ + λ)2 − 4γλ = (λ− γ)2 ≥ 0.

(e) zt = C1λ
t + C2tλ

t + z∗, where z∗ = µ∗(1−λ)+pδ
(1−λ)2 .

1Gary Solon. “Theoretical models of inequality transmission across multiple generations”. (18790), February 2013.
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4-5. K is a student with the following habit: once she studies one day, it is likely that she will not study the
following day with probability 0.7. On the other hand, the probability that she does not study two consecutive
days is 0.6. Assuming that today K has promised to study, with which probability does K study in the long
run?

Solution: Let us denote Et (Nt) the event of studying (not studying) at day t, and by et (nt) the
probability of Et (Nt). Note that et + nt = 1 for all t. We have the following data

P (Nt+1|Et) = 0.7, P (Nt+1|Nt) = 0.6,

where P (A|B) means the probability of event A conditioned by event B. Hence P (Et+1|Et) = 0.3 and
P (Et+1|Nt) = 0.4. Since

P (Et+1) = P (Et+1|Et)P (Et) + P (Et+1|Nt)P (Nt)

we get the difference equation

et+1 = 0.3et + 0.4nt.

Analogously, we have

nt+1 = 0.7et + 0.6nt.

The eigenvalues of the matrix system A =

(
0.3 0.4
0.7 0.6

)
are λ1 = 1 and λ2 = −0.1. The matrix is diagonal-

izable, with D =

(
1 0
0 −0.1

)
. It is easy to find that a diagonalization matrix is

P =

(
4 1
7 −1

)
, P−1 =

1

11

(
1 1
7 −4

)
.

Hence, recalling the formula for the solution(
et
nt

)
=

1

11

(
4 1
7 −1

)(
1 0
0 λt2

)(
1 1
7 −4

)(
e0
n0

)
,

where e0 (n0) is the probability that K. studies (not study) today. One finds

et =
1

11
λt2(7e0 − 4n0) +

4

11
(e0 + n0)

t→∞−→ 4

11
(e0 + n0).

Thus, (et, nt) converges to the stationary distribution (4/11, 7/11) independently of the values of e0 and n0,
that means that K. will study in the long run with probability 0.3636.

Remark. 1) Note that as nt = 1− et, we can reduce the system to the single equation

et+1 = −0.1et + 0.4.

The equilibrium point is of course e∗ = 4/11 and the solution converges to e∗ since the coefficient of et is
smaller than 1 in absolute value. The solution is

et = e∗ + (−0.1)t(e∗ − e0).

2) The matrix A− I is not regular. This is the reason why the homogeneous system above has equilibrium
points different from (0, 0). Note that this case has not been studied in the theory notes. However, the
problem can be solved because we know the solution.

4-6. A psychologist places a mouse inside a jail with two doors, A and B. Going through door A, the mouse receive
an electrical shock. The mouse never chooses door A twice in a row. Some food is behind door B. After
choosing B, the probability of returning to B in the following day is 0.6. At the beginning of the experiment
(Monday), the mouse chooses A or B with the same probability.
(a) With which probability does the mouse choose door A on Thursday?
(b) Which is the stationary distribution of this experiment?
(c) What do you think the mouse thinks about the psychologist?

Solution: Denote by at (bt) the probability of choosing door A (B) in day t. We suppose that at + bt = 1
for every t, that is, the mouse cannot go out of the jail. The data of the problem says that a0 = b0 = 1/2
(thus, t = 0 corresponds to the first Monday). Then, the probabilities must satisfy (see problem above for
details)

at+1 = 0at + (1− 0.6)bt,

bt+1 = at + 0.6bt.
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The matrix system has eigenvalues λ = 1 and λ = −0.4. It is easy to show that a diagonalization matrix is
given by

P =

(
2 1
5 −1

)
, P−1 =

1

7

(
1 1
5 −2

)
.

The solution is then(
at
bt

)
=

(
2 1
5 −1

)(
1 0
0 (−0.4)t

)
1

7

(
1 1
5 −2

)(
0.5
0.5

)
,

from which

at =
2

7
+

3

14
(−0.4)t, t ≥ 0.

(a) Thursday corresponds with t = 3, thus the probability of choosing door A in Thursday is

a3 = 0.272.

(b) There exists an stationary distribution, given by the limit

lim
t→∞

at =
2

7
≈ 0.2857.

The stationary distribution is to choose door A with probability 2/7 and door B with probability 5/7.
(c) It’s a joke.

4-7. Phillips curve I.
The Phillips curve relates negatively the rate of growth of money wage w and the unemployment rate U ,

(1) w = f(U), f ′(U) < 0.

This was justified empirically by A.W. Phillips for the U.K. in a very influential paper2. Later, the relation was
postulated to affect also to the rate of inflation, p, since a growing–money wage costs would had inflationary
effects3,

p = w − T.
Here, T denotes an exogenous increase in labor productivity (hence inflation appears only if the salary grows
faster than productivity). Assuming a linear form of function f , f(U) = α − βU , we will have that at every
t ≥ 1

(2) pt = α− T − βUt, α, β > 0.

On the other hand, the theory links the unemployment rate and the rate of inflation according to

(3) Ut+1 − Ut = −k(m− pt), 0 < k ≤ 1,

where m is the rate of growth of the nominal money balance4. Noticing that m − p is the rate of growth of
real money, Eqn. (3) establishes that the rate of growth of unemployment is negatively related with the rate
of growth of real money.

Find a difference equation for Ut and study the stability properties of the solution.

Solution: Substituting the Phillips relation into the equation satisfied by the unemployment rate we get

Ut+1 − Ut = −k(m− α+ T + βUt)

and rearranging terms
Ut+1 = (1− kβ)Ut − k(m− α+ T ).

The particular solution U∗, that is also the equilibrium point of the equation is given by

U∗ = (1− kβ)U∗ − k(m− α+ T )⇒ U∗ =
α−m− T

β
.

As we know, the equation is g.a.s. and converges to U∗ as t→∞ iff

|1− kβ| < 1⇔ 0 < kβ < 2.

Moreover, observe that when 0 < kβ < 1, the solution converges monotonically to U∗; when 1 < kβ < 2
converges to U∗ in a oscillating fashion, since the coefficient of Ut in the difference equation for U is 1−kβ < 0,
and when kβ = 1 we have an uninteresting case.

2A.W. Phillips (1956) “The relationship between unemployment and the rate of change of money wage rates in the United Kingdom,”

Economica, November 1958, pp. 283–299.
3The rate of growth of money wage is (Wt+1 −Wt)/Wt, where Wt is wage at time t; the rate of inflation is the rate of the general price

level, p = (Pt+1 − Pt)/Pt.
4That is, m = (Mt+1 −Mt)/Mt, where Mt is the nominal money balance, fixed by the monetary authority. It is supposed here that m

constant, independent of t.



5

4-8. Phillips curve II.
Continuing with the Phillips’ model, we analyze now the modification introduced by Friedman5, considering
the expected–augmented version of the Phillips relation

(4) w = f(U) + gπ, (0 < g ≤ 1),

where π denotes the expected rate of inflation. The idea is that if an inflationary trend has been observed long
enough, people form certain inflation expectations, which they attempt to incorporate into their money–wage
demands. Then, (2) results in the equation

(5) pt = α− T − βUt + gπt, t ≥ 0.

How is formed inflation expectations? Commonly is is assumed the adaptive expectations hypothesis

(6) πt+1 − πt = j(pt − πt), 0 < j ≤ 1.

This means that when the actual rate of inflation p turns out to exceed the expected rate π, the latter, having
now been proven to be too low, is revised upward. Conversely, if p falls short of π, then π is revised in the
downward direction. The speed of adjustment is j.

Consider the model given by Eqs. (3), (5) and (6).
(a) Eliminate pt and write a system of linear difference equations for the variables (Ut, πt).
(b) Using the Jury condition, determine whether the system is g.a.s.
(c) Find and interpret the fixed or equilibrium points of the system.

Solution:
(a) Substituting pt into (3) and (6) we have

(
Ut+1

πt+1

)
=

A︷ ︸︸ ︷(
1− kβ kg

1− j(1− g) −βj

) (
Ut
πt

)
+

(
k(α−m− T )
j(α− T )

)
(b) The characteristic polynomial is

pA(λ) = λ2−

p︷ ︸︸ ︷
(2− j(1− g)− kβ) λ+

q︷ ︸︸ ︷
(1− j(1− g)− kβ(1− j)) .

Recall that the Jury condition assuring that the module of the roots are smaller than 1 is |p| < 1+q < 2.
Applied to our model obtains

|2− j(1− g)− kβ| < 2− j(1− g)− kβ(1− j) < 2.

Note that the second inequality is always true because all the parameters are positive and 0 < g, j ≤ 1.
Thus, the condition reduces to

(7) |2− j(1− g)− kβ| < 2− j(1− g)− kβ(1− j).
We have two cases to consider.

(i) 2− j(1− g)− kβ ≥ 0. Then, the Jury condition is obviously fulfilled.
(ii) 2− j(1− g)− kβ < 0. Then, Eqn. (7) is

kβ(2− j) + 2j(1− g) < 4.

Resuming, the system is g.a.s. iff

j(1− g) + kβ ≤ 2

or
j(1− g) + kβ > 2 and kβ(2− j) + 2j(1− g) < 4.

To put an example, suppose that j = g = 0.5 and consider the product kβ as the parameter. Then the
above two conditions show that the system is g.a.s. iff kβ ∈ (0, 73 ).

(c) The fixed point of the system (U∗, π∗) is easily found without resorting to the inverse matrix (I2−A)−1

as follows. It is clear that in any equilibirum solution, the inflation rate p must be also constant, p∗ say.
After plugging Ut = U∗ into (3) we find

0 = −k(m− p∗).
Thus, p∗ = m. The equilibrium rate of inflation is equal to the rate of monetary expansion. In the same
way, putting πt = π∗ into (6)

0 = j(p∗ − π∗).

5M. Friedman (1968) “The role of monetary policy,” American Economic Review, pp. 1–17.
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Thus, π∗ = p∗ = m, the expected inflation rate is exactly equal to the actual inflation rate. Finally,
substituting Ut = U∗ into (5) we get

p∗ = α− T − βU∗ + gp∗

or

U∗ =
1

β
(α− T − (1− g)p∗).

This is called the long–run Phillips relation. As g ≤ 1, it shows a downward sloping relation between
rate of unemployment and inflation rate. When g = 1, U∗ is independent of p∗. The value of U∗ in this
case is referred as the natural rate of unemployment, which is consistent with any equilibrium rate of
inflation.


