
Consumer Theory: 
Uncertainty 



The presence of uncertainty implies that the consequences of       
each alternative are not known in advance, but depend on the 
realization of events out of the control of the consumer. 

Examples of uncertain decisions:  

 investment decisions (in assets, education, etc.)  
 career choices 
 financing a house 
 choosing a car or a life insurance policy 
 voting for a political candidate.  

Risk and Uncertainty 



In this context, 

 alternatives are lotteries, and 

 choosing an alternative involves assuming its 
 uncertain consequences. 

That is, making a decision involves betting on an alternative. 

Risk and Uncertainty 



In order to describe a consumer’s uncertainty we need to  
formalize a probabilistic space: 

    A sample space E which contains the set of all the possible 
elementary events or states of nature. 

    A probability distribution over E specifying the probability of 
each possible state of nature. 

Description of the Uncertainty 



For simplicity we assume that E is a finite set, and we represent 
it as a list describing the possible states of nature: 

E={e1,...,em}. 

That is, E is a exhaustive list of mutually exclusive events.   

Description of the Uncertainty 



A probability distribution over E specifies the probability of 
each state of nature, 

pi =Pr(ei). 

Thus, a probability distribution over E is simply a vector 

p=(p1,...,pm) 
satisfying  
                          (i)     0 ≤ pi ≤ 1, 
and  
                          (ii) p1 + p2 +...+ pn =1. 

Description of the Uncertainty 



We restrict attention to situations in which the consequences of  
decisions are monetary gains or losses.  

The alternative choices, referred to as lotteries, are therefore   
random variables specifying a payoff (that is, a monetary  
gain or loss) in each state of nature.  

Lotteries 



Thus, we can represent all the possible lotteries as functions  

l: E → ℜ; 

that is, as random variables.  

However, representing lotteries this way requires a very  
precise model of uncertainty, that is, a very large sample space E  
containing all events that are potentially relevant for each  
conceivable lottery. 

Lotteries 



For this reason, we rather describe each lottery as a pair 

l = (x,p), 
in which the vector  

x = (x1,...,xn) 

specifies the possible payoffs, and the vector  

p = (p1,...,pn) 

specifies the probabilities with which these payoffs are  
received.  

Denote by L the set of possible lotteries. 

Lotteries 



Example 1. Jorge has a car that needs to be repaired. The cost of 
repair is uncertain: it is either 300 euros with probability 1/3, or 
1,200 euros with probability 2/3. Alternatively, he has been offered 
a used car at a price of 1,000 euros.  

Jorge cannot do without a car as there is no public transportation 
that he can use for his daily activity.  

  Should he repair the car or replace it? 

Lotteries 



In order to develop a consumer theory (or a general decision 
theory) under uncertainty we postulate that each individual has well 
defined preferences ≽ over the set of all possible lotteries,  L.  

For l=(x,p), l’=(x’,p’) in L,  

≽ : preference relation 

                   l ≽ l’ (l is preferred o indifferent to l’). 

 ≻: strict preference relation 

               l ≻ l’ (l is preferred to l) -- l ≽ l’, but not l’ ≽ l. 

~: indifference relation 

          l ~ l’ (l is indifferent to l’) -- l ≽ l’ and l’ ≽ l. 

Preferences and Risk 



Examples: Let l = (x,p), l’ = (x’,p’) ∈ L. 
[1] Preferences EMV:  

  l ≽EMV l’ if E(l) ≥ E(l’).   

(Comment on St. Petersburg Paradox.) 

[2] Preferences maxmin :  

          l ≽Mm l’ if min {x1,...,xn}  ≥ min {x’1,...,x’n’}. 

[3] Preferences α:  

             l ≽α l’ if E(lα) =∑i pi (xi)α  ≥ E(lα’) =∑i pi (x’i)α. 

Preferences and Risk 



Example 2. Order the lotteries: l = ((4,1),(1/2,1/2)) and  
l’ = ((0,5),(1/2,1/2)) ∈ L, according to the preferences described in 
[1],  [2] and [3] above.  

[1] We have 
E(l) = 1/2 (4) + 1/2 (1) = 2,5 

and 
E(l’) = 1/2 (0) + 1/2 (5) = 2,5.  

Therefore 
l ~EMV l’. 

Preferences and Risk 



Example 2. Order the lotteries: l = ((4,1),(1/2,1/2)) and  
l’ = ((0,5),(1/2,1/2)) ∈ L, according to the preferences described in 
[1], [2] and [3] above. 

[2] We have   

min {4, 1} = 1 y min {0, 5} = 0. 

Therefore 
l ≻Mm l’. 

Preferences and Risk 



Example 2. Order the lotteries: l = ((4,1),(1/2,1/2)) and  
l’ = ((0,5),(1/2,1/2)) ∈ L, according to the preferences described in 
[1], [2] and [3] above. 

[3] Assume that α = 0,5. (Note x0,5 = √x). We have 

                       E(l0,5) = 1/2 √4 + 1/2 √1 = 3/2 
and 

E(l’0,5) = 1/2√0 + 1/2√5 =√5/2 < 3/2. 

Therefore, 
                       l ≻0,5 l’. 

Preferences and Risk 



Example 2. Order the lotteries: l = ((4,1),(1/2,1/2)) and  
l’ = ((0,5),(1/2,1/2)) ∈ L, according to the preferences described in 
[1], [2] and [3] above. 

[3a] Assume α = 2. We have 

             E(l2) = 1/2 (42) + 1/2 (12) = 17/2 
and 
             E(l’2) = 1/2 (02) + 1/2 (52) =25/2. 

Therefore,  
                   l’ ≻2 l. 

Preferences and Risk 



Basic Axioms  

A.1. Preferences are complete if ∀ l, l’  ∈ L:    

l ≽ l’, or l ≽ l’, or both.  

A.2. Preferences are transitive if ∀l, l’ , l’’  ∈ L:   

l ≽ l’ and l’ ≽ l’’ implies l ≽ l’’. 

Preferences over lotteries: Axioms 



A.3. Preferences are monotone if  

∀l=(x,p), l’ = (x’,p’) ∈ L: 

 {x > x’ and p = p’} ⇒ l ≻ l’. 

That is, if the payoffs of a lottery are  uniformly greater than those 
of another lottery, then the former is preferred. 

Preferences over lotteries: Axioms 



A.4. Preferences are continuos if for every sequence ln in L such  
that limn→∞ ln =l 

    ln ≽ l’ for all n implies l ≽ l’, 
and 

    l’ ≽ ln  for all n implies l’ ≽ l. 

That is, small variations on the payoffs or the distribution of  
lotteries do not change drastically the preferences relations among  
them. 

Preferences over lotteries: Axioms 



Examples 

It is easy to check that the preferences defined in examples  

[1] to [3] above (≽EMV, ≽Mm, and  ≽α) satisfy axioms 1 to 4. 

Preferences over lotteries: Axioms 



As in the case of certainty, it would be convenient to have a utility 
function to represent the preferences of an individual. 

Under uncertainty, a utility function associates to each lottery 
l ∈ L a real number v(l); that is, 

v: L → ℜ. 

Utility Functions 



Definition.  
A utility function v represents a preference relation  ≽ over the set  
of lotteries L if ∀l, l’ ∈ L:  

l ≽ l’ ⇔ v(l) ≥ v(l’). 

Theorem. 
If a preference relation ≽ over L satisfies axioms A.1, A.2 and A.4,  
then there is a utility function v that represents ≽.  

Utility Functions 



Examples  

(1) Preferences EMV: The function “mathematical expectation”,  
v(l) = E(l)  

represents this preference relation: ∀l, l’ ∈ L:  

l ≽EMV l’ ⇔ E(l) ≥ E(l’).  

Utility Functions 



Examples  

(2) Preferences ≽Mm  (maxmin): The function 
v(l) = min {x1,..., xn} 

represents this preference relation; that is, ∀l = (x,p),  

and l’  = (x’,p’) ∈ L:  

l ≽Mm l’ ⇔ min {x1,..., xn} ≥ min {x’1,..., x’n}.  

Utility Functions 



Examples 

(3) Preferences ≽α: The utility function   
                                        v(l) = E(lα)  

represents this preference relation; that is, ∀l, l’ ∈ L:  

l ≽α l’ ⇔ E (lα) ≥ E (l’α).  

Utility Functions 



The set of preference relations ≽α  has an interesting property: a 

preference in this set can represented by a utility function whose 

value over a lottery  

   l =(x1,…,xn,p1,…,pn),  

v(l), is the mathematical expectation of the random variable  

   lu =(u(x1),…,u(xn),p1,…,pn) 

whose values are the payoffs of the lottery l, transformed by the 

function u(x) = xα.  

Expected Utility 



It is natural to interpret the value u(x) as a utility over the payoff  
x. For every function u: ℜ → ℜ we can construct a utility  
function over lotteries by defining for all l = (x,p) ∈ L: 

v(l) = Eu(l) = ∑i pi u(xi). 

We refer to the function u as a Bernoulli utility function, and to 
the functions over lotteries v with this form (that is, to functions 
that are a composition of the mathematical expectation and a 
Bernoulli utility function) as von Neumann-Morgensten utility 
functions. 

Expected Utility 



Which preferences can be represented by von Neumann- 
Morgensten utility functions? In order to provide an answer to  
this questions, we introduce a new axiom on preferences over  
lotteries. 

Let l=(x1,...,xn;p1,...,pn) and l’ = (y1,..,yn’; q1,...,qn’) and let    

λ ∈ [0,1]. The lottery [λl + (1-λ)l’]  = (z,w) is given by  

 z = (x1,...,xn,y1,..,yn’),  

and  

 w = (λp1,...,λpn,(1-λ)q1,..., (1-λ)qn’).   

Expected Utility 



Assume that the set of lotteries L convex; that is,  
∀l, l’  ∈ L and λ ∈ [0,1]:  

[λl + (1-λ)l’] ∈ L. 

A.5. (Independence) ∀ l, l’ , l’’ ∈ L:    

l’ ≽ l’’ ⇒ [λl + (1-λ)l’] ≽ [λl + (1-λ)l’’] . 

Expected Utility 



Theorem:  

If a preference relation ≽ over L satisfies axioms A.1, A.2, A.4 and 

A.5, then there is a vN-M utility function that represents it; that is, 

there is a Bernoulli utility function u: ℜ → ℜ such that  ∀l,l’ ∈ L:   

 l ≽ l’ ⇔ Eu(l) ≥ Eu(l’). 

If in addition the preference relation ≽ satisfies axiom A.3, then 

the function  u is increasing.  

Expected Utility 



The risk involved in lotteries is one of the most important  
factors to order alternatives lotteries and to identify the best  
alternative.  

Obviously, the degree of risk aversion (or the degree of risk  
attraction) is different for different individuals. 

To begin, we propose specific definitions of the concepts of  
risk aversion, risk neutrality, and risk attraction.  

Risk Attitudes 



Let us discuss the consequences of an individual’s risk attitude in a 
simple problem: 

Assume that an individual must decide whether to accepts a bet 
where one can win or lose 10 euros with the same  probability, 
against the alternative of not betting. 

We can represent the two alternative lotteries as  
l = (10, -10; 1/2, 1/2)   and  l’ = (0; 1).  

Risk Attitudes 



Since  
E(l) = E(l’) = 0, 

it seems natural to postulate that a risk neutral individual (that 
is, someone who feels neither attraction nor aversion to risk) 
should be indifferent to either lottery; i.e., he would indifferent 
between betting or not betting. Thus, if ≽N represents his 
preferences, then  

l ∼N l’. 

Risk Attitudes 



An individual who feels attraction to risk should find it  
exciting betting (lottery l), rather than not betting (l’). That is, 
if  ≽RL are his preferences of a risk loving individual, then  

l ≻RL l’. 

Risk Attitudes 



And if the individual is a risk averse, then he would rather not 
bet (l’) than betting (l). Thus, if  ≽RA  are the preferences of a 
risk averse individual, then  

l’ ≻RA l.  

Risk Attitudes 



This simple example motivates the following definitions: 

We say that a lottery l ∈ L is non-degenerate if it involves at 
least two different payoffs with positive probability.  

In the example we just described, lottery l is non-degenerate, 
whereas l’ is a degenerate lottery. 

Risk Attitudes 



Let l be a non-degenerate lottery, and let lc  be a (degenerate) 
lottery that pays E(l) with certainty; that is, lc  = (E(l); 1).  

We say that the individual with preferences  ≽  on L is:  

Risk Neutral: if  l ~ lc. 

Risk Averse:  if   lc ≻ l. 

Risk Loving: if  l ≻ lc. 

Risk Attitudes 



Exercise. An individual is a participant is a trivial TV program. If she 
responds correctly to a question, then she has the chance to bet on a second 
question, and if she respond correctly she can bet on a third question. The 
payoff to answer correctly the first question is 16 thousand euros, and each 
time she respond correctly the payoff doubles. However, is she responds 
incorrectly to a questions, then she loses her entire earnings.  

After answering correctly to the first question, a individual who beliefs that 
she knows the answer to any question with probability 1/2, must decide 
whether to bet on a second and on a third question. 

Represent the problem by means of a decision tree, and solve it assuming 
that the individual is risk averse. Solve it also assuming that the individual 
is risk loving, and assuming she is risk neutral.  

Risk Attitudes 



Proposition 1.  
Assume that an individual preferences over the set of lotteries  
L are represented by a Bernoulli utility function u. Let l ∈ L be  
a non-degenerate lottery. Then the individual is 

  Risk Neutral: if and only if Eu(l) = u(E(l)) 

  Risk Averse: if and only if Eu(l) < u(E(l)) 

  Risk Loving: if and only if Eu(l) > u(E(l)). 

Risk Attitudes 



This simple proposition suggests that there is a relation between 
the risk attitude of an individual and the curvature of any 
Bernoulli utility function that represents her preferences. 

Let l = (x1, x2; λ, 1-λ) be a lottery such that  x1 ≠ x2 and 0 < λ < 1.  
We have 

Eu(l) = λ u(x1) + (1-λ) u(x2), 
and 

E(l) = λx1 + (1-λ)x2. 

Risk Attitudes 



If the individual is risk neutral, then  

λu(x1) + (1-λ)u(x2) = Eu(l) =u(E(l)) =u(λx1 + (1-λ)x2). 

Since x1, x2 y λ are arbitrary this implies that u is an afin 
function; that is,  

u(x) = a + bx.  

Note that A.3 implies that u’(x) = b > 0. 

Risk Attitudes 



Income x1 E(l) 

Utility 

0 x2 

u(E(l)) 

u(x1) 

u(x2) 

Risk Neutral 



On the hand, since the lottery l is non-degenerate, if the 
individual is risk averse, then  

 λu(x1) + (1-λ)u(x2) = Eu(l) < u(E(l)) = u(λx1 + (1-λ)x2). 

That is, u is a (strictly) concave function.  

Risk Attitudes 



Income 

Utility 

u(x2) 

u(x1) 

u(E(l)) 

E(l) x1 x2 

λu(x1)+(1-λ)u(x2) 

Risk Averse 



And if the individual is risk loving, then 

 λu(x1) + (1-λ)u(x2) = Eu(l) > u(E(l)) = u(λx1 + (1-λ)x2). 

That is, u is a (strictly) convex function. 

Risk Attitudes 



Income 

Utility 

u(x2) 

u(x1) 

E(l) x1 x2 

λu(x1)+(1-λ)u(x2) 

Risk Loving 

u(E(l)) 



Proposition 2. 
Assume that the preferences of an individual over the set of 
lotteries L are represented by a Bernoulli utility function u. The 
individual is  

  Risk Neutral: iff u is an afin function. 

  Risk Averse: iff u is a (strictly) concave function. 

  Risk Loving: iff u is a (strictly) convex function. 

Risk Attitudes 



If a Bernoulli utility function is twice differentiable, then the  
properties of Proposition 2 are easy to check: in this case the  
individual is: 

  Risk Neutral: iff ∀x ∈ ℜ : u’’ (x) = 0 

  Risk Averse: iff ∀x ∈ ℜ : u’’ (x) < 0 

  Risk Loving: iff ∀x ∈ ℜ : u’’ (x) > 0. 

Risk Attitudes 



Note that while for each  increasing function f: ℜ → ℜ, the utility functions 
of over lotteries v and w such that  

w(l) = f(v(l))  

represent the same preferences, this is not the case for Bernoulli utility 
functions. For example, the Bernoulli utility functions  

u1(x) = x, and u2(x) = x2 = (u1(x))2  

do not represent the same preferences, despite the fact that u2 is an 
increasing transformation of u1.  

While u1 represents the preferences of a risk neutral individual  (Eu1(l) = 
E(l)), the preferences represented by u2(x) are those of a risk loving 
individual. 

Risk Attitudes 



However, if  u2 is an afin transformation of u1, that is 	


u2(x) = a + b u1(x),  

where b > 0, then the Bernoulli utility functions u1 y u2 represent the same 
preferences.  

The mathematical expectation is a linear operation, that is, for each random 
variable X and a,b ∈ ℜ we have E(a+bX) = a + b E(X). Thus, for every 
lottery we have 

Eu2(l) = a + b Eu1(l). 
Therefore  ∀l,l’∈ L:   

Eu2(l) ≥ Eu2(l’) ⇔ a + b Eu1(l)  ≥ a + b Eu1(l’) ⇔ Eu1(l)  ≥ Eu1(l’). 

(In particular, all the increasing afin functions represent the same 
preferences as the Bernoulli utility function u(x) = x.) 

Risk Attitudes 



In order to obtain our last characterization of risk attitudes, we  
need to introduce the concepts of  certainty equivalent and risk  
premium of a lottery. 

Risk Attitudes 



Assume that the preferences of an individual over the set of 
lotteries L are represented by the Bernoulli utility function u. 
Let l ∈ L.  

The certainty equivalent of lottery l, CE(l), is the solution to 
the equation 

u(x) = Eu(l). 

The  risk premium of lottery l, RP(l), is 

RP(l) = E(l) - CE(l). 

Risk Attitudes 



Proposition 3.  
Let CE: L → ℜ the function that describes for each lottery l ∈ L  
and individual’s certainly equivalent, CE(l).  Let l ∈ L be a non- 
degenerate lottery. The individual is 

  Risk Neutral: iff CE(l) = E(l). 

  Risk Averse: iff CE(l) < E(l). 

  Risk Loving: iff CE(l) > E(l). 

Risk Attitudes 



Proposition 4:  
Let RP: L → ℜ the function that describes for each lottery l ∈ L  
and individual’s certainly equivalent, RP(l). Let l ∈ L be a non- 
degenerate lottery. The individual is  

  Risk Neutral: iff RP(l) = 0. 

  Risk Averse: iff RP(l) > 0. 

  Risk Loving: iff RP(l) < 0. 

Risk Attitudes 



Exercise: apply these concepts to exercise 2. 

Risk Attitudes 



In situations of uncertainty the acquisition of new information 
may allow an individual to increase her welfare by allowing 
her to select the best alternative depending on the information 
received. 

When acquiring new information is costly, determining 
whether an individual must incur the cost requires a cost-
benefit analysis.  

We discuss this in the context of an example. 

The Value of Information 



Example 1. Jorge has a car that needs to be repaired. He must 
decide whether to repair it or to replace it with another used car 
whose price is 1.000 euros. The cost of repairing his current 
car is uncertain: it may cost either 300 euros with probability 
1/3, and 1.200 euros with probability 2/3.  

How much will be willing to pay Jorge in order to know the 
cost of repairing his car? 

The Value of Information 



Recall that Jorge was risk neutral, so that his preferences are 
represented by the Bernoulli utility function u(x) = x, and that 
his optimal decision l* was to repair his car. The expected 
utility of l* is 

Eu(l*) = E(l*) = 1/3 (-300) + 2/3 (-1200) = -900.   

The Value of Information 



If Jorge knows with certainty the cost of the car repair, then he 
may condition his decision (whether to replace the car or to 
replace with the used one he has been offered) on the 
information received. 

Obviously, with perfect information about the repair cost, 
Jorge would repair if the cost is 300 euros, and he would 
replace the car otherwise, incurring a cost of 1000 euros  

Hence the expected utility of the lottery lI he faces with perfect 
information is 

Eu(lI) =E(lI) = 1/3 (-300) + 2/3 (-1000) = -766,6.   

   

The Value of Information 



How much is Jorge willing to pay for this information?  

If he pays M euros, then his expected utility is 

           Eu(lI(M)) = 1/3 (-300-M) + 2/3 (-1000-M) 

 = -(766,6 + M).   

The Value of Information 



The maximum quantity Jorge would pay for the information, M*, 
is such that the expected utility of the lottery lI, having paid the 
information cost M* is equal to the his expected utility without 
information, Eu(l*).  

Therefore M* is the solution to the equation 

Eu(lI(M)) = Eu(l*).  

The Value of Information 



Since  
Eu(l*) = -900, 

The maximum quantity Jorge would pay for the information is the 
solution to the equation 

-(766,6 + M*) = -900; 

that is, M* = 133,3 euros. 

The Value of Information 



We refer to M* as the  value of (perfect) information. 

Note that the calculation of M* involves the Jorge’s preferences.  

The value of information is therefore subjective.  

That is, there is objective of information as its use and impact on 
the decision problem facing an agent depends on the agent’s 
characteristics. 

The Value of Information 



Also note that since Jorge is risk neutral and we  represent his 
preferences by u(x) = x, then 

Eu(l) = E(l), 
and 

Eu(lI(M)) = E(lI) - M. 
Hence  

Eu(lI(M*)) = Eu(l*)  ⇔  E(lI) = E(l*) - M*. 

That is,  
M* =E(lI) - E(l*). 

The Value of Information 



However, this formula is not correct when the individual is not risk 
neutral. This is easy to see.  

Assume that Jorge’s preferences are represented by the Bernoulli 
utility function    

u(x) = (1200 + x)1/2.  

Since u’’(x) < 0, Jorge is now risk averse. 

His expected utility if he repairs the car is now  

Eu(lR) = 1/3 (900)1/2 + 2/3 (0)1/2 ≈ 10. 

The Value of Information 



However, his expected utility if he replaces the car is 

Eu(lS) = (200)1/2 ≈ 14,14. 

Therefore 
Eu(lS)  > Eu(lR); 

that is, with this preferences (and beliefs) the optimal decision is to 
replace the car (rather than to repair it);   i.e.,  

l* = lS. 

The Value of Information 



On the other hand, if Jorge knows the repair cost, then he repairs 
when the cost is 300 euros and replaces the car when it is 1200 
euros.  

Hence with perfect information his expected utility function is  

Eu(lI(M)) = 1/3 (1200-300-M)1/2 + 2/3 (1200-1000-M)1/2. 

The Value of Information 



The value of perfect information is now the solution to the 
equation 

Eu(lI(M)) = Eu(l*);  

that is,  
1/3 (900-M)1/2 + 2/3 (200-M)1/2 = (200)1/2. 

Solving we obtain 

M* ≈ 144,23 ≠ 133,3.  

The Value of Information 



The formula obtained in this example to calculate the value of 
information,  

Eu(lI(M)) = Eu(l*),  

applies in general whether information is perfect or imperfect or 
partial. 

Nevertheless, when the information is partial determining the 
optimal decisions and calculating the expected utility of the 
corresponding lottery, lI(M), may be a difficult task.  

The Value of Information 



The Value of Imperfect Information 

Exercise 4. How much will be willing to pay Pedro Banderas to 
know whether the movie he is considering producing will be 
played in cinemas? 

The Value of Information 


