Theory of the Firm

The Firm's Problem: Costs and Profits

Firm's Problem: Description

- We consider a firm producing a single good Q using two inputs: L (labour) and K (capital).
- The technology of the firm is described by the production function, $F(L, K)$, which provides the maximum level of output that can be obtained for each input combination, (L,K).
- Let p be the market price of good Q, w the price of the labour input (L) and r the price of the capital input (K).
- We assume that the firm is competitive in the input markets; i.e., (w,r) are given.

Firm's Problem: Description

- As the goal of the firm is profit maximization (profit = revenue - cost), we can write the firm's problem in the following way:

$$
\begin{aligned}
& \text { Max } p Q-w L-r K \\
& \text { s.t. } Q \leq F(L, K) \\
& \quad Q \geq 0, L \geq 0, K \geq 0
\end{aligned}
$$

- The decision variables are: $\mathrm{Q}, \mathrm{L}, \mathrm{K}, \mathrm{p}$?

Firm's Problem: Description

- In order to determine whether or not p is a decision variable, or whether it depends on Q, etc., we need information about the product market:
- Is it competitive? If it is, p is given (is considered like "data" by the firm).
- Does the firm have some market power? If it does, p is not independent of Q .

Cost Minimization

- Now, let us postpone the problem of profit maximization and let us think of the "internal" problem of the firm taking the production level as given: Q_{0}.
- Given Q_{0}, the goal of profit maximization implies, as an intermediate goal, the cost minimization of producing Q_{0}.

Cost Minimization

$$
\begin{gathered}
\operatorname{Max}_{\{L, K\}} p Q_{0}-w L-r K, \text { being } p Q_{0} \text { a cte } \\
\Leftrightarrow \\
\operatorname{Max}_{\{L, K\}}-(w L+r K) \\
\Leftrightarrow \\
\operatorname{Min}_{\{L, K\}} w L+r K
\end{gathered}
$$

Cost Minimization

- Given Q_{0}, profit maximization requires cost minimization; that is, the firm's problem is:

$$
\begin{gathered}
\operatorname{Min}_{\{L, K\}} w L+r K \\
\text { s.t. } Q \geq F(L, K) \\
L \geq 0, K \geq 0
\end{gathered}
$$

Cost Minimization

- If C is any cost level, the isocost line $C=w L+r K$ contains all inputs combinations (L,K) which cost C euros. The equation of this straight line is:

$$
K=(C / r)-(w / r) L
$$

Cost Minimization

- Graphically, the solution of the cost minimization problem is:

Cost Minimization

- The solution of the cost minimization problem is the conditional factor demands:

$$
\mathrm{L}^{*}=\mathrm{L}(\mathrm{Q}, \mathrm{w}, \mathrm{r}) ; \mathrm{K}^{*}=\mathrm{K}(\mathrm{Q}, \mathrm{w}, \mathrm{r})
$$

- The Total Cost Function provides the minimum cost of producing Q at prices (w, r):

$$
C(Q, w, r)=w L^{*}+r K^{*}=w L(Q, w, r)+r K(Q, w, r)
$$

- Average Total Cost and Marginal Cost are:

$$
\begin{aligned}
& \mathrm{ATC}=\mathrm{C}(\mathrm{Q}, \mathrm{w}, \mathrm{r}) / \mathrm{Q} \\
& \mathrm{MC}=\mathrm{dC}(\mathrm{Q}, \mathrm{w}, \mathrm{r}) / \mathrm{dQ}
\end{aligned}
$$

Cost Minimization: Short Run

- In the short run, some of the factors are fixed. Let us suppose in our context that $\mathrm{K}=\mathrm{K}_{0}$. Thus, the cost minimization problem is:

$$
\begin{array}{ll}
\operatorname{Min}_{\{L\}} & w L+r K_{0} \\
\text { s.t. } & Q \leq F\left(L, K_{0}\right) \\
& L \geq 0
\end{array}
$$

where rK_{0} is a constant, which will be named Fixed Cost (FC).

Cost Minimization: Short Run

- With only two inputs, the cost minimization problem in the short run is trivial:

$$
F\left(L, K_{0}\right)=Q \rightarrow L^{*}=L(Q)
$$

- In this case, L* is independent of (w,r), because given K_{0} the isoquant determines the conditional labour demand.

Cost Minimization: Short Run

- But in general, with more than two inputs, the cost minimization problem in the short run also makes sense.
- Let us suppose $\mathrm{L}=\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right) ; \mathrm{K}_{0}=\left(\mathrm{K}_{01}, \mathrm{~K}_{02}\right)$, where K_{0} $=\left(\mathrm{K}_{01}, \mathrm{~K}_{02}\right)$ is a vector of constants.
- The problem in this case will be:

$$
\begin{array}{ll}
\operatorname{Min}_{\left\{L_{1}, L_{2}\right\}} & w_{1} L_{1}+w_{2} L_{2}+r_{1} K_{01}+r_{2} K_{02} \\
\text { s.t. } & Q \leq F\left(L_{1}, L_{2}, K_{01}, K_{02}\right) \\
& L_{1} \geq 0, L_{2} \geq 0
\end{array}
$$

Cost Minimization: Short Run

- The solution is the conditional factors demands in the short run:
$\mathrm{L}_{1}{ }^{*}=\mathrm{L}_{1}\left(\mathrm{Q}, \mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{r}_{1}, \mathrm{r}_{2}\right) ; \mathrm{L}_{2}{ }^{*}=\mathrm{L}_{2}\left(\mathrm{Q}, \mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{r}_{1}, \mathrm{r}_{2}\right)$

Cost Minimization: Short Run

- Let us go back to the two-inputs case, with only one of them variable in the short run.
- The Total Cost Function in the short run is:

$$
C T_{S R}(Q, w, r)=w L(Q)+r K_{0},
$$

where $\mathrm{wL}(\mathrm{Q})$ is the variable cost in the short run $\left(\mathrm{VC}_{S R}\right)$, and $r K_{0}$ is the fixed cost in the $\mathrm{SR}\left(\mathrm{FC}_{\mathrm{SR}}\right)$.

- Average Total Cost in the SR:

$$
A T C_{S R}=T C_{S R}(Q, w, r) / Q=A V C_{S R}+A F C_{S R}
$$

where $w L(Q) / Q$ is the average variable cost in the short run, and $\quad \mathrm{rK}_{0} / \mathrm{Q}$ is the average fixed cost in the short run..

Cost Minimization: Short Run

- Marginal Cost in the SR:

$$
\mathrm{MC}_{S R}=\mathrm{dTC} C_{S R}(\mathrm{Q}) / \mathrm{dQ}=\mathrm{dVC} \mathrm{~S}_{\mathrm{SR}}(\mathrm{Q}) / \mathrm{dQ}
$$

$>$ Remark: the $\mathrm{TC}_{S R}$ is different from the TC in the long run, and therefore ATC is also different. $M C_{S R}$ does not coincide either with MC in the long run.

Examples: Costs and Returns to Scale

- Let us suppose these three production functions:
(a) $F(L, K)=L K ®$ increasing returns
(b) $F(L, K)=\sqrt{L K} ®$ constant returns
(c) $F(L, K)=\sqrt[3]{L K} ®$ decreasing returns
- For all of them, the cost minimization problem is:

$$
\begin{array}{ll}
\operatorname{Min}_{\{L, K\}} & w L+r K \\
\text { s.t. } & Q \leq F(L, K) \\
& L \geq 0, K \geq 0
\end{array}
$$

Examples: Costs and Returns to Scale

- In all these three cases we have interior solutions, so solving the problem of the firm is the same as solving the following system:
(1) $|M R T S(L, K)|=w / r$
(2) $F(L, K)=Q$
- MRTS coincides for the three functions. Therefore, condition (1) coincides for all of them:

$$
K / L=w / r \rightarrow K=(w / r) L
$$

Examples: Costs and Returns to Scale

- Let us calculate the solution for the function (a). Plug $\mathrm{K}=(\mathrm{w} / \mathrm{r}) \mathrm{L}$ into the production function:

$$
Q=K L=(w / r) L \cdot L=(w / r) L^{2}
$$

- Conditional demands for production factors:

$$
L^{*}=\sqrt{\frac{r}{w} Q} ; K^{*}=\sqrt{\frac{w}{r} Q}
$$

- Costs:

$$
\begin{aligned}
& T C(Q)=w L^{*}+r K^{*}=2 \sqrt{w r} \sqrt{Q} \\
& A T C(Q)=2 \sqrt{w r} \frac{1}{\sqrt{Q}} ; M C(Q)=\sqrt{w r} \frac{1}{\sqrt{Q}}
\end{aligned}
$$

Examples: Costs and Returns to Scale

- For $w=1, r=4$ we get

$$
T C(Q)=4 \sqrt{Q} ; A T C(Q)=4 / \sqrt{Q} ; M C(Q)=2 / \sqrt{Q}
$$

Examples: Costs and Returns to Scale

- Let us calculate the solution for the function (b). Plug $\mathrm{K}=(\mathrm{w} / \mathrm{r}) \mathrm{L}$ into the production function:

$$
Q=\sqrt{L K}=\sqrt{(w / r) L^{2}}
$$

- Conditional demands for production factors:

$$
L^{*}=Q \sqrt{\frac{r}{w}} ; K^{*}=Q \sqrt{\frac{w}{r}}
$$

- Costs: $T C(Q)=w L^{*}+r K^{*}=Q 2 \sqrt{w r}$

$$
A T C(Q)=2 \sqrt{w r} ; M C(Q)=2 \sqrt{w r}
$$

Examples: Costs and Returns to Scale

- For $w=1, r=4$ we get

$$
T C(Q)=4 Q ; A T C(Q)=4 ; M C(Q)=4
$$

Examples: Costs and Returns to Scale

- Let us calculate the solution for the function (c). Plug $K=(w / r) L$ into the production function:

$$
Q=\sqrt[3]{L K}=\sqrt[3]{(w / r) L^{2}}
$$

- Conditional demands for ${ }_{L^{*}=Q^{3 / 2}}$ production factors:

$$
L^{*}=Q^{3 / 2} \sqrt{\frac{1}{w}} ; K^{*}=Q^{3 / 2} \sqrt{\frac{w}{r}}
$$

- Costs: $T C(Q)=w L^{*}+r K^{*}=Q^{3 / 2} 2 \sqrt{w r}$

$$
A T C(Q)=Q^{1 / 2} 2 \sqrt{w r} ; M C(Q)=Q^{1 / 2} 3 \sqrt{w r}
$$

Examples: Costs and Returns to Scale

- For $w=1, r=4$ we get

$$
T C(Q)=4 Q^{3 / 2} ; A T C(Q)=4 Q^{1 / 2} ; M C(Q)=6 Q^{1 / 2}
$$

Reconsidering the Firm's Problem

The firm's problem, in the short run or in the long run, can be written as

$$
\begin{aligned}
& \max \pi(Q)=T R(Q)-T C(Q) \\
& \text { s.t. } Q \geq 0
\end{aligned}
$$

We find the solution using the FOC, and then check the SOC and the Shutting Down Condition:

$$
\begin{aligned}
& F O C: \quad M R(Q)=M C(Q) \Rightarrow Q^{*} \\
& S O C: \quad \pi^{\prime \prime}(Q)=M R^{\prime}(Q)-M C^{\prime}(Q) \leq 0 \\
& S D C: \quad \pi\left(Q^{*}\right) \geq \pi(0)
\end{aligned}
$$

Reconsidering the Firm's Problem

Conditions FOC, SOC, SDC provide a solution to the firm's problem whether it is a competitive firm or not -- for example, when it is a monopoly.

For a competitive firm, the marginal revenue is a constant (the market price). In the monopoly case, however, the marginal revenue will depend on Q .

