
Consumer Theory:
Uncertainty



The presence of uncertainty implies that the consequences of       
each alternative are not known in advance, but depend on the 
realization of events out of the control of the consumer.

Examples of uncertain decisions: 

lcareer choices
lfinancing a house
lchoosing a car or a life insurance policy
lvoting for a political candidate
linvestment decisions (in assets, education, etc.). 

Risk and Uncertainty



In this context,

alternatives are lotteries, and

choosing an alternative involves assuming its 
uncertain consequences.

That is, making a decision involves betting on an alternative.

Risk and Uncertainty



We restrict attention to situations in which the consequences of 
decisions are monetary gains or losses. 

The alternative choicesare therefore random variables, referred to 
as lotteries,

l = (x,p),
where

x = (x1,...,xn)
are possible payoffs, and

p = (p1,...,pn)

are probabilities with which these payoffs are received. 

Lotteries



Example 1. Jorge has a car that needs to be repaired. The cost of 
repair is uncertain: it is either 300 euros with probability 1/3, or 
1,200 euros with probability 2/3. Alternatively, he has been offered 
a used car at a price of 1,000 euros. 

Jorge cannot do without a car as there is no public transportation 
that he can use for his daily activity. 

Should he repair the car or replace it?

Lotteries



In order to develop a consumer (or decision) theory under 
uncertainty we postulate that individuals have well defined 
preferences ≽ over the set of all possible lotteries satisfying the 
usual properties:

A.1. Completeness. " l, l′: l ≽ l′, or l ≽ l′, or both. 

A.2. Transitivity. "l, l′,l′′: l ≽ l′ and l′ ≽ l′′ Þ l ≽ l′′.

A.3. Monotonicity. "l=(x,p),l′ = (x′,p′): {x > x′, p = p′} Þ l ≻ l′.

A.4. Continuity. {ln ≽ l′ "n, limn→∞ ln =l} Þ l ≽ l′.

Preferences and Risk



Examples: Let l = (x,p), l′ = (x′,p′).
[1] Preferences EMV: 

l ≽EMV l′ if E[l] ≥ E[l′].

(Comment on St. Petersburg Paradox.)

[2] Preferences maxmin : 

l ≽Mm l’ if min {x1,...,xn}  ≥ min {x’1,...,x’n’}.

[3] Preferences α: 

l ≽α l′ if E[lα] =∑i pi (xi)α ≥ E(lα’) =∑i pi (x’i)α.

Preferences and Risk



Example 2. Order the lotteries: l = ((4,1),(1/2,1/2)) and
l′ = ((0,5),(1/2,1/2)), according to the preferences described in [1],  
[2] and [3] above. 

[1] We have
E[l] = 1/2 (4) + 1/2 (1) = 2,5

and
E [l′] = 1/2 (0) + 1/2 (5) = 2,5. 

Therefore
l ~EMV l′.

Preferences and Risk



Example 2. Order the lotteries: l = ((4,1),(1/2,1/2)) and 
l′ = ((0,5),(1/2,1/2)), according to the preferences described in [1], 
[2] and [3] above.

[2] We have  

min {4, 1} = 1 y min {0, 5} = 0.

Therefore
l ≻Mm l′.

Preferences and Risk



Example 2. Order the lotteries: l = ((4,1),(1/2,1/2)) and
l′ = ((0,5),(1/2,1/2)), according to the preferences described in [1], 
[2] and [3] above.

[3] Assume that α = 0,5. (Note x0,5 = √x). We have

E[l0,5]= 1/2 √4 + 1/2 √1 = 3/2
and

E[(l′ )0,5]= 1/2√0 + 1/2√5 =√5/2 < 3/2.

Therefore,
l ≻0,5 l′.

Preferences and Risk



Example 2. Order the lotteries: l = ((4,1),(1/2,1/2)) and
l′ = ((0,5),(1/2,1/2)), according to the preferences described in
[1], [2] and [3] above.

[3a] Assume α = 2. We have

E[l2) = 1/2 (42) + 1/2 (12) = 17/2
and

E[l’2] = 1/2 (02) + 1/2 (52) =25/2.

Therefore, 
l′ ≻2 l.

Preferences and Risk



The preference relations ≽α can represented by a utility function 

whose value over a lottery 

l =(x1,…,xn,p1,…,pn), 

is the mathematical expectation of the random variable 

lu =(u(x1),…,u(xn),p1,…,pn)

whose values are the payoffs of the lottery l, transformed by the 

function u(x) = xα. 

It seems natural to view u as a utility function over payoffs.

Expected Utility



For every function u: Â → Â we can construct a utility 
function over lotteries by defining for all l = (x,p)

v(l) = E[u(l)] = ∑i pi u(xi).

We refer to the function u as a Bernoulli utility function, and to 
the functions over lotteries v with this form (that is, to functions 
that are a composition of the mathematical expectation and a 
Bernoulli utility function) as von Neumann-Morgensten utility 
functions.

We simplify notation by writing Eu(l) for E[u(l)]. 

Expected Utility



Which preferences over lotteries can be represented by von 
Neumann-Morgensten utility function? To answer this question 
we need to introduce a new axiom.

For l=(x;p), l′ = (y;q), λÎ[0,1], define the lottery

[λl + (1-λ) l′] = ((x,y),(λp,(1-λ)q)).

Independence Axiom: "l, l′ , l′′ , λ Î [0,1] :

l′ ≽ l′′ Þ [λl + (1-λ) l′] ≽ [λl + (1-λ) l′′].

In which scenarios the Independence Axion does not hold?

Expected Utility



Expected Utility Theorem. 

If a preference relation ≽ over lotteries satisfies axioms A.1, A.2, 

A.4 and the Independence Axion, then there is a Bernoulli utility 

function u: Â → Â such that  "l,l′ :

l ≽ l′ Û Eu(l) ≥ Eu(l′).

Moreover, if ≽ satisfies A.3, then the function  u is increasing. 

Expected Utility



The risk involved in lotteries is one of the most important 
factors to order alternatives lotteries and to identify the best 
alternative. 

Obviously, the degree of risk aversion (or the degree of risk 
attraction) is different for different individuals.

To begin, we propose specific definitions of the concepts of 
risk aversion, risk neutrality, and risk attraction. 

Risk Attitudes



Let us discuss the consequences of an individual’s risk attitude in a 
simple problem:

Assume that an individual must decide whether to accepts a bet 
where one can win or lose 10 euros with the same  probability, 
against the alternative of not betting.

We can represent the two alternative lotteries as 
l = (10, -10; 1/2, 1/2) and l′ = (0; 1).

Risk Attitudes



Since 
E[l] = E[l′] = 0,

it seems natural to postulate that a risk neutral individual (that 
is, someone who feels neither attraction nor aversion to risk) 
should be indifferent to either lottery; i.e., he would indifferent 
between betting or not betting. Thus, if ≽N represents his 
preferences, then 

l ~N l′.

Risk Attitudes



An individual who feels attraction to risk should find it  
exciting betting (lottery l), rather than not betting (l′). That is, 
if  ≽RL are his preferences of a risk loving individual, then 

l ≻RL l′.

Risk Attitudes



And if the individual is a risk averse, then he would rather not 
bet (l′) than betting (l). Thus, if  ≽RA are the preferences of a 
risk averse individual, then 

l′ ≻RA l. 

Risk Attitudes



This simple example motivates the following definitions:

We say that a lottery l is non-degenerate if it involves at least 
two different payoffs with positive probability. 

In the example we just described, lottery l is non-degenerate, 
whereas l′ is a degenerate lottery.

Risk Attitudes



Let l be a non-degenerate lottery, and let lc  be a (degenerate) 
lottery that pays E(l) with certainty; that is, lc  = (E(l); 1). 

We say that the individual with preferences  ≽ is: 

Risk Neutral: if l ~ lc.

Risk Averse:  if   lc ≻ l.

Risk Loving: if  l ≻ lc.

Risk Attitudes



Exercise. An individual is a participant is a trivial TV program. If she 
responds correctly to a question, then she has the chance to bet on a second 
question, and if she respond correctly she can bet on a third question. The 
payoff to answer correctly the first question is 16 thousand euros, and each 
time she respond correctly the payoff doubles. However, is she responds 
incorrectly to a questions, then she loses her entire earnings. 

After answering correctly to the first question, a individual who beliefs that 
she knows the answer to any question with probability 1/2, must decide 
whether to bet on a second and on a third question.

Represent the problem by means of a decision tree, and solve it assuming 
that the individual is risk averse. Solve it also assuming that the individual 
is risk loving, and assuming she is risk neutral. 

Risk Attitudes



Proposition 1. An individual’s preferences over the lotteries 
are represented by a Bernoulli utility function u. Let l be a non-
degenerate lottery. Then the individual is

l Risk Neutral: if Eu(l) = u(E[l])

l Risk Averse: if Eu(l) < u(E[l])

l Risk Loving: if Eu(l) > u(E[l]).

Risk Attitudes



This simple proposition suggests that there is a relation between 
the risk attitude of an individual and the curvature of any 
Bernoulli utility function that represents her preferences.

Let l = (x1, x2; λ, 1-λ) be a lottery such that  x1 ≠ x2 and 0 < λ < 1. 
We have

Eu(l) = λ u(x1) + (1-λ) u(x2),
and

E[l] = λx1 + (1-λ)x2.

Risk Attitudes



If the individual is risk neutral, then 

λu(x1) + (1-λ)u(x2) = Eu(l) =u(E(l)) =u(λx1 + (1-λ)x2).

Since x1, x2 y λ are arbitrary this implies that u is an afin 
function; that is, 

u(x) = a + bx.

Note that A.3 implies that u’(x) = b > 0.

Risk Attitudes



Incomex1 E[l]

Utility

0 x2

u(E[l])

u(x1)

u(x2)

Risk Neutral



On the hand, since the lottery l is non-degenerate, if the 
individual is risk averse, then 

λu(x1) + (1-λ)u(x2) = Eu(l) < u(E[l]) = u(λx1 + (1-λ)x2).

That is, u is a (strictly) concave function. 

Risk Attitudes



Income

Utility

u(x2)

u(x1)

u(E[l])

E[l]x1 x2

λu(x1)+(1-λ)u(x2)

Risk Averse



And if the individual is risk loving, then

λu(x1) + (1-λ)u(x2) = Eu(l) > u(E[l]) = u(λx1 + (1-λ)x2).

That is, u is a (strictly) convex function.

Risk Attitudes



Income

Utility

u(x2)

u(x1)

E[l]x1 x2

λu(x1)+(1-λ)u(x2)

Risk Loving

u(E[l])



Proposition 2. An individual’s preferences over lotteries are 
represented by a Bernoulli utility function u. Then the individual is 

l Risk Neutral: if u is an afin function.

l Risk Averse: if u is a (strictly) concave function.

l Risk Loving: if u is a (strictly) convex function.

Risk Attitudes



If a Bernoulli utility function u is twice differentiable, then the 
properties of Proposition 2 are easily check: in this case the 
individual is:

l Risk Neutral: if u′′ = 0

l Risk Averse: if u′′ < 0

l Risk Loving: if u′′ > 0.

Risk Attitudes



Note that while for each  increasing function f: Â → Â, the utility functions 
of over lotteries v and w such that 

w(l) = f(v(l))

represent the same preferences, this is not the case for Bernoulli utility 
functions. For example, the Bernoulli utility functions 

u1(x) = x, and u2(x) = x2 = (u1(x))2

do not represent the same preferences, despite the fact that u2 is an 
increasing transformation of u1. 

While u1 represents the preferences of a risk neutral individual  (Eu1(l) = 
E(l)), the preferences represented by u2(x) are those of a risk loving 
individual.

Risk Attitudes



However, if  u2 is an afin transformation of u1, that is 
u2(x) = a + b u1(x), 

where b > 0, then the Bernoulli utility functions u1 y u2 represent the same 
preferences. 

The mathematical expectation is a linear operation, that is, for each random 
variable X and a,b Î Â we have E(a+bX) = a + b E(X). Thus, for every 
lottery we have

Eu2(l) = a + b Eu1(l).
Therefore  "l,l’:

Eu2(l) ≥ Eu2(l’) Û a + b Eu1(l)  ≥ a + b Eu1(l’) Û Eu1(l)  ≥ Eu1(l’).

(In particular, all the increasing afin functions represent the same 
preferences as the Bernoulli utility function u(x) = x.)

Risk Attitudes



In order to obtain our last characterization of risk attitudes, we 
need to introduce the concepts of  certainty equivalent and risk 
premium of a lottery.

The certainty equivalent of lottery l, CE(l), is the solution to 
the equation

u(x) = Eu(l).

The risk premium of lottery l, RP(l), is

RP(l) = E[l] - CE(l).

Risk Attitudes



Proposition 3. Let l be any non-degenerate lottery, and let 
CE(l) be an individual’s certainly equivalent. The individual is

l Risk Neutral: if CE(l) = E[l].

l Risk Averse: if CE(l) < E[l].

l Risk Loving: if CE(l) > E[l].

Risk Attitudes



Proposition 4: Let l be any non-degenerate lottery, and let 
RP(l) be an individual’s certainly equivalent. The individual is

l Risk Neutral: if RP(l) = 0.

l Risk Averse: if RP(l) > 0.

l Risk Loving: if RP(l) < 0.

Risk Attitudes



In situations of uncertainty the acquisition of new information 
may allow an individual to increase her welfare by allowing 
her to select the best alternative depending on the information 
received.

When acquiring new information is costly, determining 
whether an individual must incur the cost requires a cost-
benefit analysis. 

We discuss this in the context of an example.

The Value of Information



Example 1. Jorge has a car that needs to be repaired. He must 
decide whether to repair it or to replace it with another used car 
whose price is 1.000 euros. The cost of repairing his current 
car is uncertain: it may cost either 300 euros with probability 
1/3, and 1.200 euros with probability 2/3. 

How much will be willing to pay Jorge in order to know the 
cost of repairing his car?

The Value of Information



Recall that Jorge was risk neutral, so that his preferences are 
represented by the Bernoulli utility function u(x) = x, and that 
his optimal decision l* was to repair his car. The expected 
utility of l* is

Eu[l*] = E[l*] = 1/3 (-300) + 2/3 (-1200) = -900.  

The Value of Information



If Jorge knows with certainty the cost of the car repair, then he 
may condition his decision (whether to replace the car or to 
replace with the used one he has been offered) on the 
information received.

Obviously, with perfect information about the repair cost, 
Jorge would repair if the cost is 300 euros, and he would 
replace the car otherwise, incurring a cost of 1000 euros 

Hence the expected utility of the lottery lI he faces with perfect 
information is

Eu[lI] =E[lI] = 1/3 (-300) + 2/3 (-1000) = -766,6.  

The Value of Information



How much is Jorge willing to pay for this information? 

If he pays M euros, then his expected utility is

Eu(lI(M)) = 1/3 (-300-M) + 2/3 (-1000-M)

= -(766,6 + M).  

The Value of Information



The maximum quantity Jorge would pay for the information, M*, 
is such that the expected utility of the lottery lI, having paid the 
information cost M* is equal to the his expected utility without 
information, Eu(l*). 

Therefore M* is the solution to the equation

Eu(lI(M)) = Eu(l*). 

The Value of Information



Since
Eu(l*) = -900,

The maximum quantity Jorge would pay for the information is the 
solution to the equation

-(766,6 + M*) = -900;

that is, M* = 133,3 euros.

The Value of Information



We refer to M* as the  value of (perfect) information.

Note that the calculation of M* involves the Jorge’s preferences. 

The value of information is therefore subjective. 

That is, there is objective of information as its use and impact on 
the decision problem facing an agent depends on the agent’s 
characteristics.

The Value of Information



Also note that since Jorge is risk neutral and we  represent his 
preferences by u(x) = x, then

Eu(l) = E[l],
and

Eu(lI(M)) = E[lI] - M.
Hence 

Eu(lI(M*)) = Eu(l*)  ⇔ E[lI]= E[l*] - M*.

That is, 
M* =E[lI] – E[l*].

The Value of Information



However, this formula is not correct when the individual is not risk 
neutral. This is easy to see. 

Assume that Jorge’s preferences are represented by the Bernoulli 
utility function   

u(x) = (1200 + x)1/2. 

Since u’’(x) < 0, Jorge is now risk averse.

His expected utility if he repairs the car is now 

Eu(lR) = 1/3 (900)1/2 + 2/3 (0)1/2 ≈ 10.

The Value of Information



However, his expected utility if he replaces the car is

Eu(lS) = (200)1/2 ≈ 14,14.

Therefore
Eu(lS)  > Eu(lR);

that is, with this preferences (and beliefs) the optimal decision is to 
replace the car (rather than to repair it);   i.e., 

l* = lS.

The Value of Information



On the other hand, if Jorge knows the repair cost, then he repairs 
when the cost is 300 euros and replaces the car when it is 1200 
euros. 

Hence with perfect information his expected utility function is 

Eu(lI(M)) = 1/3 (1200-300-M)1/2 + 2/3 (1200-1000-M)1/2.

The Value of Information



The value of perfect information is now the solution to the 
equation

Eu(lI(M)) = Eu(l*); 

that is,
1/3 (900-M)1/2 + 2/3 (200-M)1/2 = (200)1/2.

Solving we obtain

M* ≈ 144,23 ≠ 133,3. 

The Value of Information



The formula obtained in this example to calculate the value of 
information, 

Eu(lI(M)) = Eu(l*), 

applies in general whether information is perfect or imperfect or 
partial.

Nevertheless, when the information is partial determining the 
optimal decisions and calculating the expected utility of the 
corresponding lottery, lI(M), may be a difficult task. 

The Value of Information



The Value of Imperfect Information

Exercise 4. How much will be willing to pay Pedro Banderas to 
know whether the movie he is considering producing will be 
played in cinemas?

The Value of Information


