MATHEMATICS FOR ECONOMICS II (2018-19)

ECONOMICS, LAW-ECONOMICS, INTERNATIONAL STUDIES-ECONOMICS

SHEET 3. PRIMITIVES AND INTEGRALS

(1) Find the following integrals:

a)
$$\int \frac{x^2 + x + 1}{x\sqrt{x}} dx$$
 b) $\int xe^{-2x} dx$ c) $\int \sin^{14} x \cos x \, dx$
d) $\int (x+1)(2-x)^{1/3} dx$ e) $\int \frac{x^4}{1+x^5} dx$ f) $\int e^{2x} \sin x \, dx$
g) $\int \frac{1}{3+x^2} dx$ h) $\int x \cos x \, dx$ i) $\int \left(1 + \frac{1}{x}\right)^3 \frac{1}{x^2} \, dx$
j) $\int x \sin ax^2 dx$ k) $\int \frac{x}{\sqrt{16-x^2}} \, dx$ l) $\int \frac{1}{\frac{x^2}{2} - 2x + 4} \, dx$
m) $\int \frac{40x}{(x-1)^{40}} \, dx$ n) $\int \frac{x^2 + 1}{x^3 - 4x^2 + 4x} \, dx$ o) $\int \frac{2x + 1}{x^3 + 6x} \, dx$
p) $\int \frac{x^4}{x^4 - 1} \, dx$ q) $\int \frac{4x + 6}{(x^2 + 3x + 7)^3} dx$ r) $\int \frac{2x - 6}{(x - 2)^2} dx$

Solution: a) $\frac{2}{3}x^{3/2} + 2\sqrt{x} - \frac{2}{\sqrt{x}} + C$; Write $I = \int (x^2 + x + 1)x^{-3/2} dx = \int x^{1/2} + x^{-1/2} + x^{-3/2} dx$ and integrate term by term.

- b) $-\frac{e^{-2x}(2x+1)}{4} + C$; By parts, u = x, $dv = e^{-2x}dx$, so that du = dx and $v = -\frac{1}{2}e^{-2x}$. Then use $\int u dv = uv \int v du$.
- c) $\frac{\sin^{15} x}{15} + C$; Change of variable, $t = \sin x$, so that $dt = \cos x dx$. Hence $I = \int t^{14} dt$.
- d) $-\frac{3(2-x)^{4/3}(4x+13)}{28} + C$; Change of variable, t = 2 x, so that dt = -dx and x + 1 = t + 3. Hence $I = -\int (t+3)t^{1/3}dt = -\int t^{4/3} + 3t^{1/3}dt$ and integrate term by term.
- e) $\frac{\ln|1+x^5|}{5} + C$; Change of variable, $t = x^5$, so that $dt = 5x^4dx$ and thus $I = \int \frac{1/5}{1+t}dt$ and integrate.
- f) $\frac{e^{2x}}{5}(2\sin x \cos x) + C$; By parts, $u = e^{2x}$ and $dv = \sin x dx$, so that $du = 2e^{2x} dx$ and $v = -\cos x$. We find

$$I = -2e^{2x}\cos x + 2\int e^{2x}\cos x dx.$$

For the second integral take parts again $(u = e^{2x})$ and $dv = \sin x dx$, thus $du = 2e^{2x} dx$, $v = \sin x$ to find

$$I = -2e^{2x}\cos x + 2\int e^{2x}\cos x dx = -2e^{2x}\cos x + 2\left(e^{2x}\sin x - 2\int e^{2x}\sin x dx\right)$$
$$= -2e^{2x}\cos x + 2e^{2x}\sin x - 4I.$$

Solving for I we get the result.

- g) $\frac{\sqrt{3}}{3} \arctan(\frac{\sqrt{3}x}{3}) + C$; Divide both numerator and denominator by 3 to get $I = \frac{1}{3} \int \frac{1}{1 + (x/\sqrt{3})^2} dx$. Then recall that the antiderivative is an arctangent.
- h) $\cos x + x \sin x + C$; By parts, u = x, $dv = \cos x dx$.
- i) $-\frac{(1+\frac{1}{x})^4}{4} + C$; Change of variable $t = x^{-1}$, so $dt = -x^{-2}dx$. Thus $I = -\int (1+t)^3 dt = -(1+t)^4/4 + C$ and so on.
- j) $-\frac{\cos ax^2}{2a} + C$; Change of variable, $t = ax^2$, thus dt = 2axdx and $I = \frac{2a}{\int} \sin t dt$.
- k) $-\frac{\sqrt{16-x^2}}{2}+C$; Change of variable $t=16-x^2,\,dt=-2x.$ Thus $I=-2\int\frac{1}{\sqrt{t}}dt.$

l) $\arctan\left(\frac{x-2}{2}\right) + C$; (Hard). Write the denominator $x^2 - 2x + 4 = \frac{1}{2}((x-2)^2 + 4) = 2\left(\left(\frac{x-2}{2}\right)2 + 1\right)$. Hence $I = \int \frac{1/2}{\left(\frac{x-2}{2}\right)2+1} dx = \int \frac{dt}{t^2+1}$.

m)
$$\int \frac{40x}{(x-1)^{40}} dx = \int \frac{40(x-1)}{(x-1)^{40}} dx - \int \frac{40}{(x-1)^{40}} dx = -\frac{40}{38}(x-1)^{-38} - \frac{1}{39}(x-1)^{-39} + C$$

n)
$$\int \frac{x^2+1}{x^3-4x^2+4x} dx = \frac{1}{4} \int \frac{1}{x} dx + \frac{3}{4} \int \frac{1}{x-2} dx + \frac{5}{2} \int \frac{1}{(x-2)^2} dx = \frac{1}{4} \ln x + \frac{3}{4} \ln(x-2) - \frac{5}{2}(x-1)^{-1} + C$$

$$\begin{array}{l} 0) \, \int \frac{2x+1}{x^3+6x} \, dx = \int \left(\frac{2-\frac{x}{6}}{x^2+6} + \frac{1/6}{x}\right) \, dx = -\frac{1}{12} \int \frac{2x}{x^2+6} \, dx + 2 \int \frac{1}{x^2+6} \, dx + \frac{1}{6} \ln x + C = \\ = -\frac{1}{12} \ln(x^2+6) + \frac{2\sqrt{6}}{6} \arctan \frac{x\sqrt{6}}{6} + \frac{1}{6} \ln x + C \end{array}$$

p)
$$\int \frac{x^4}{x^4-1} dx = \int \left(1 + \frac{1}{x^4-1}\right) dx = x + \int \frac{1}{x^4-1} dx = x + \int \left(\frac{1/4}{x-1} - \frac{1/4}{x+1} - \frac{1/2}{x^2+1}\right) dx = x + \frac{1}{4}\ln(x-1) - \frac{1}{4}\ln(x+1) - \frac{1}{2}\arctan x + C$$

q)
$$\int \frac{4x+6}{(x^2+3x+7)^3} dx = 2 \int (2x+3)(x^2+3x+7)^{-3} dx = 2(x^2+3x+7)^{-2} / (-2) + C$$

p)
$$\int \frac{2x-6}{(x-2)^2} dx = \int \frac{2(x-2)-2}{(x-2)^2} dx = \int (\frac{2}{(x-2)} - \frac{2}{(x-2)^2}) dx = 2\ln(x-2) + \frac{2}{x-2} + C$$

(2) Evaluate F'(x) in the following cases:

a)
$$\int_1^x (t^2 - 2t + 5) dt$$
 b) $\int_x^0 t \cos t dt$ c) $x \left(\int_x^0 t \cos t dt \right)$

Solution: a) $x^2 - 2x + 5$; b) $-x \cos x$; c) $\left(\int_x^0 t \cos t dt \right) - x^2 \cos x$.

- (3) Consider the function $F(x) = \int_{-3}^{x} \frac{t^2 4}{3t^2 + 1} dt$.
 - (a) Find the local maximum points of F(x). Is any of these points a global maximum?
 - (b) Find the local minimum points of F(x).

Let now $G(x) = \int_{-1}^{x} \frac{t^2 - 4}{3t^2 + 1} dt$. Does G(x) have a global minimum?

Solution: $F'(x) = \frac{x^2-4}{3x^2+1}$, thus $x = \pm 2$ are the only critical points. Note that F' is positive for x < -2, negative for -2 < x < 2 and positive again for x > 2, thus -2 is a local maximum and 2 is a local minimum. By the way, it is a good exercise to compute F'' and then conclude that x = 0 is an inflection point.

(4) In each case, find the area of the figure bounded by the functions f and g.

a)
$$f(x) = x^2 - 4x + 3$$
, $g(x) = -x^2 + 2x + 3$

b)
$$f(x) = (x-1)^3$$
, $g(x) = x-1$

c)
$$f(x) = x^4 - 2x^2 + 1$$
, $q(x) = 1 - x^2$

Solution: a) 9; b) 0.5; c) 4/15.

(5) Draw the functions $y = 2e^{2x}$ and $y = 2e^{-2x}$ and find the area bounded by these two functions and the lines x = -1, x = 1.

Solution: $2(e - e^{-1})^2 \approx 11.0488$.

(6) Find the tangent line to the graph of $f(x) = \sqrt{x}$ at the point x = 4 and calculate the area of the region enclosed between the graph of f and its tangent line, and the lines x = 0 and x = 4.

Solution:
$$y = 1 + \frac{x}{4}$$
; $A = \frac{2}{3}$.

(7) An asset X pays dividends D(t)dt at instant of time t. The total present value of dividends in the interval [0,T], T>0, is

$$V(0) = \int_0^T e^{-rt} D(t) dt,$$

where r > 0 is the continuous rate of interest of a riskless government bond in the same period. Find V(0) in the following cases.

- (a) D(t) = 1.
- (b) D(t) = 2 up to $\frac{T}{2}$ and D(t) = 0 in $(\frac{T}{2}, T]$.
- (c) $D(t) = e^{it}$, where i > 0.
- (d) $D(t) = \sin \frac{\pi t}{T}$ (harder).

Solution: a)
$$\frac{1}{r}(1-e^{-rT})$$
; b) $\frac{2}{r}(1-e^{-rT/2})$; c) $\frac{1}{r-i}(1-e^{(i-r)T})$, if $i \neq r$ and T otherwise; d) $(1+e^{-rT})\frac{T}{1+(\frac{rT}{T})^2}$.

(8) Let $f:[0,2] \longrightarrow \mathbb{R}$ be continuous, increasing in (0,1), decreasing in (1,2) and, also, satisfying that: f(0)=3, f(1)=5 and f(2)=4. Between which values can we guarantee that $\int_0^2 f(x) dx$ is located?

Solution: Since, $3 \le \int_0^1 f(x) \ dx \le 5$, and $4 \le \int_1^2 f(x) \ dx \le 5$, we have that $7 \le \int_0^2 f(x) \ dx \le 10$.

(9) Let $f:[1,3] \longrightarrow [2,4]$ be increasing, continuous and bijective such that $\int_1^3 f \, dx = 5$. Calculate $\int_2^4 f^{-1}(x) \, dx$

Solution: Since $\int_1^3 f \, dx + \int_2^4 f^{-1}(x) \, dx = 10$, $\int_2^4 f^{-1}(x) \, dx = 10 - 5 = 5$.

(10) Certain company has determined that its marginal cost is $\frac{dC}{dx} = 4(1+12x)^{-1/3}$. Find the cost function if C = 100 when x = 13.

Solution: $\frac{1}{3}(1+12x)^{2/3}$.