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II.2 THE RIEMANN INTEGRAL

Integration is related to the calculus of areas under a curve. An intuitive way to find the

area is to draw rectangles with smaller and smaller widths to obtain a good approximation.

We hope than in the limit, that is, when the rectangles become infinitely thin, we get the

exact value of the area. The Riemann integral formalizes this idea and establishes conditions

for this approach to be successful.

1. Construction of the Riemann Integral

Definition 1.1. Let A ⊆ R.

(1) a is an upper bound of A iff a ≥ x, for all x ∈ A.

(2) a is a lower bound of A iff a ≤ x, for all x ∈ A.

(3) A is upper bounded iff A has upper bounds.

(4) A is lower bounded iff A has lower bounds.

(5) A is bounded iff it is both upper and lower bounded.

(6) a is the supremum of A, written a = supA, iff a is the least of the upper bounds of

A, that is, a ≥ x for all x ∈ A and a ≤ b for all upper bound b of A.

(7) a is the infimum of A, written a = inf A, iff a is the greatest of the lower bounds of

A, that is, a ≤ x for all x ∈ A and a ≥ b for all lower bound b of A.

(8) a is the maximum of A iff a = supA and a ∈ A.

(9) a is the minimum of A iff a = inf A and a ∈ A.

Example 1.2. A = (0,∞) is lower bounded but not upper bounded; inf A = 0; A has no

minimum, since 0 = inf A /∈ A.

B = (−∞, 0) is upper bounded but not lower bounded; supB = 0; B has no maximum,

since 0 = supB /∈ B.

Definition 1.3. A partition of the interval [a, b] is a finite set of points

P = {x0, x1, . . . , xn},

where a = x0 < x1 < · · · < xn = b.
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Definition 1.4. Given two partitions P and P ′ of the interval [a, b], we say that P ′ is finer

than P if and only if P ⊆ P ′.

Definition 1.5. Let f : [a, b] → R be a bounded function. Let P be a partition of [a, b]

and let

mi = inf{f(x) : xi−1 ≤ x ≤ xi},

Mi = sup{f(x) : xi−1 ≤ x ≤ xi},

for all i = 1, . . . , n.

The lower Darboux sum of f on P is

s(f,P) =

n∑
i=1

mi(xi − xi−1).

The upper Darboux sum of f on P is

S(f,P) =

n∑
i=1

Mi(xi − xi−1).

Example 1.6. Compute the lower and upper Darboux sums of f(x) = x2 in the interval

[−3, 3] when the partitions are P = {−3,−2, 0, 2, 3} and P ′ = {−3,−2,−1, 0, 1, 2, 3}.

It is easy to calculate m1 = f(−2) = 4, m2 = m3 = f(0) = 0, m4 = f(2) = 4, and

M1 = f(−3) = 9, M2 = f(−2) = 4, M3 = f(2) = 4, M4 = f(3) = 9. Hence

s(x2,P) = 4(−2− (−3)) + 0(0− (−2)) + 0(2− 0) + 4(3− 2) = 8,

S(x2,P) = 9(−2− (−3)) + 4(0− (−2)) + 4(2− 0) + 9(3− 2) = 34.

On the other hand, m′1 = f(−2) = 4, m′2 = f(−1) = 1, m′3 = m′4 = f(0) = 0, m′5 =

f(1) = 1, m′6 = f(2) = 4, and M ′1 = f(−3) = 9, M ′2 = f(−2) = 4, M ′3 = f(−1) = 1,

M ′4 = f(1) = 1, M ′5 = f(2) = 4, M ′6 = f(3) = 9. Hence (noting that the increment

xi − xi−1 = 1)

s(x2,P ′) = 4 + 1 + 0 + 0 + 1 + 4 = 10,

S(x2,P ′) = 9 + 4 + 1 + 1 + 4 + 9 = 28.

Note that P ′ is finer than P and

s(x2,P) ≤ s(x2,P ′) ≤ S(x2,P ′) ≤ S(x2,P).
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Example 1.7. Let the function f(x) = x3 − x2 − x+ 2 and the interval [0, 2]. The figures

below illustrate the upper and the lower Darboux sums for partitions {0, 0.5, 1, 1.5, 2} and

{0, 0.25, 0.5, 0.75, 1.25, 1.5, 1.75, 2}, respectively. Note how the approximation is better as

the partition is finer. The true value of the integral is∫ 2

0
f(x) dx =

10

3
≈ 3.33333,
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4∑
i=1

Mi ∆x = 1/2 · [f(0) + f(0.50) + f(1.50) + f(2.00)]

= 1/2 · [2.0000 + 1.3750 + 1.6250 + 4.0000]

= 4.50.
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= 1/2 · [1.3750 + 1.0000 + 1.0000 + 1.6250]

= 2.50.
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8∑
i=1

Mi ∆x = 1/4 · [f(0) + f(0.25) + f(0.50) + f(0.75) + f(1.25) + f(1.50) + f(1.75) + f(2.00)]

= 1/4 · [2.0000 + 1.7031 + 1.3750 + 1.1094 + 1.1406 + 1.6250 + 2.5469 + 4.0000]

= 3.8750.
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mi ∆x = 1/4 · [f(0.25) + f(0.50) + f(0.75) + f(1.00) + f(1.00) + f(1.25) + f(1.50) + f(1.75)]

= 1/4 · [1.7031 + 1.3750 + 1.1094 + 1.0000 + 1.0000 + 1.1406 + 1.6250 + 2.5469]

= 2.8750.

Proposition 1.8 (Properties of Darboux sums). Let f : [a, b]→ R be bounded, with

m = inf{f(x) : x ∈ [a, b]},

M = sup{f(x) : x ∈ [a, b]}.

Let P, P ′ two partitions of [a, b].
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(1) m(b− a) ≤ s(f,P) ≤ S(f,P) ≤M(b− a).

(2) If P ′ is finer than P, then

s(f,P) ≤ s(f,P ′) ≤ S(f,P ′) ≤ S(f,P).

(3) s(f,P ′) ≤ S(f,P).

(4) The sets

{s(f,P) : P is a partition of [a, b]} and {S(f,P) : P is a partition of [a, b]}

are bounded.

Property (4) is immediate from properties (1) and (3). For instance, 0 ≤ s(x2,P) ≤
S(x2,P) ≤ 54, for all partition P. In fact, using property (2), we can give a better estimate

for the area under the graph of f(x) = x2 in the interval [−3, 3] (assuming that the area

exists): 10 ≤ area ≤ 28.

Definition 1.9. Let f : [a, b]→ R be bounded.

The lower integral of f in [a, b] is defined as the number

L

∫ b

a
f = sup{s(f,P) : P is a partition of [a, b]}.

The upper integral of f in [a, b] is defined as the number

U

∫ b

a
f = inf{S(f,P) : P is a partition of [a, b]}.

Proposition 1.10. Let f : [a, b]→ R be bounded. Then

L

∫ b

a
f ≤ U

∫ b

a
f.

Definition 1.11. Let f : [a, b]→ R be bounded.

We say that the function is Riemann integrable (or simply integrable) in the interval [a, b]

iff

L

∫ b

a
f = U

∫ b

a
f.

In this case, this number is the integral of f in [a, b] (or defined integral of f in [a, b]) and

is denoted ∫ b

a
f,

∫ b

a
f(x)dx.
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When f is nonnegative in [a, b],

∫ b

a
f(x)dx is the area of the region of the plane

{(x, y) : a ≤ x ≤ b, 0 ≤ y ≤ f(x)}.

Not every bounded function is integrable.

Theorem 1.12. The function f : [a, b] → R is integrable iff for all ε > 0, there exists a

partition P of [a, b] such that

S(f,P)− s(f,P) < ε.

Proposition 1.13. If f is continuous in [a, b], then f is integrable in [a, b].

This result admits a useful generalization.

Proposition 1.14. If f is bounded in [a, b] and has a finite number of discontinuities, then

f is integrable in [a, b].

Example 1.15. The only point of discontinuity of the signum function sgn(x) = 1, if

x > 1, sgn(x) = −1, if x < 0, is 0, hence sgn is an integrable function. Also, the value of

the integral does not change by attaching any value to sgn(0). To compute
∫ 2
−2 sgn(x)dx,

we can decompose the integral into the sum
∫ 0
−2(−1)dx+

∫ 2
0 1dx. Using the Barrow’s rule

in each interval [−2, 0] and [0, 2] (see Theorem 3.2 below), we have∫ 2

−2
sgn(x)dx = −x

∣∣∣0
−2

+ x
∣∣∣2
0

= 0.

Hence the signum function is integrable in [−2, 2] and its integral is 0.

2. Properties of the Riemann Integral

Proposition 2.1 (Properties of the integral). Let f, g : [a, b] → R be integrables and let

α ∈ R.

(1) Linearity.

(a)
∫ b
a (f + g) =

∫ b
a f +

∫ b
a g.

(b)
∫ b
a αf = α

∫ b
a f .

(2) Monotonicity.

f(x) ≥ g(x) for all x ∈ [a, b], implies

∫ b

a
f ≥

∫ b

a
g.
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(3)

∣∣∣∣∫ b

a
f(x)dx

∣∣∣∣ ≤ ∫ b

a
|f(x)|dx.

(4) Additivity with respect to the interval. f is integrable if and only if f is integrable

in [a, c] and in [c, b] for all c ∈ [a, b] and∫ b

a
f =

∫ c

a
f +

∫ b

c
f.

Proposition 2.2 (Theorem of the mean). Let f : [a, b]→ R be integrable.

(1) If f is integrable in [a, b] and if m and M are lower and upper bounds of f in [a, b],

respectively (they could be the infimum and the supremum), then there is α ∈ [m,M ]

such that ∫ b

a
f(x) = α(b− a).

(2) If f is continuous in [a, b], then there exists c ∈ [a, b] such that∫ b

a
f(x) = f(c)(b− a).

3. Fundamental Theorem of Calculus

In this section we show the connection between Riemann integral and antiderivatives.

Theorem 3.1 (Fundamental Theorem of Calculus). Let f : [a, b]→ R be integrable and let

F : [a, b]→ R be defined by

(3.1) F (x) =

∫ x

a
f(t) dt.

Then

(1) F is continuous in [a, b].

(2) If f is continuous in x ∈ [a, b], then F is derivable in x and F ′(x) = f(x) (hence, if

f is continuous in [a, b], then F is an antiderivative of f).

Written in other terms, the theorem establishes

d

dx

(∫ x

a
f(t) dt

)
= f(x).

Theorem 3.2 (Barrow’s Rule). Let f : [a, b] → R be integrable and let G be an antideriv-

ative of f in [a, b] (that is, G′(x) = f(x) for all x ∈ [a, b]). Then∫ b

a
f(x) dx = G(b)−G(a),
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Proof. Since that both G and the function F defined in (3.1) are antiderivatives of f in

[a, b], the difference G− F is constant in [a, b]. Hence G(a)− F (a) = G(b)− F (b), or

G(b)−G(a) = F (b)− F (a) =

∫ b

a
f(x) dx−

∫ a

a
f(x) dx =

∫ b

a
f(x) dx.

�

Most often we will write G(b)−G(a) as G(x)
∣∣∣b
a
.

Theorem 3.3 (Change of variable). Let f be continuous in [a, b], and let x = g(t) be

continuous, together with the derivative in [α, β], where g(α) = a, g(β) = b and a ≤ g(t) ≤ b.
Then ∫ b

a
f(x) dx =

∫ β

α
f(g(t))g′(t) dt.

Note: from x = g(t) one gets dx = g′(t)dt, and the identity above follows.

Theorem 3.4 (Integration by parts). If u and v have continuous derivatives in [a, b], then∫ b

a
u(x)v′(x) dx = u(x)v(x)

∣∣∣b
a
−
∫ b

a
u′(x)v(x) dx.

4. The area of a plane figure

Given a continuous function f , the area of the figure bounded by the curve y = f(x), the

axis OX and the line segments x = a, x = b is

A =

∫ b

a
|f(x)| dx.

Example 4.1. The area of the figure limited by y = 1− x in the interval [0, 2] is

A =

∫ 2

0
|1− x| dx =

∫ 1

0
(1− x) dx+

∫ 2

1
−(1− x) dx =

1

2
+

1

2
= 1.

Example 4.2. The area of the figure limited by the graph of y = lnx and the horizontal

axis and the line segments x = 1/e, x = e is

A =

∫ e

1
e

| lnx| dx.

The logarithm is negative in [1/e, 1] and positive in [1, e]. thus

A =

∫ 1

1
e

− lnx dx+

∫ e

1
lnx dx
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The integral can be solved using parts u = lnx, dv = dx obtaining∫ 1

1
e

lnx dx = x lnx
∣∣∣1
1
e

− x
∣∣∣1
1
e

= −1 +
2

e
,∫ e

1
lnx dx = x lnx

∣∣∣e
1
− x
∣∣∣e
1

= 1.

Thus, A = −(−1 + 2/e) + 1 = 2(1− 1/e).

Suppose that a plane figure is bounded by the continuous curves y = f(x), y = g(x),

a ≤ x ≤ b, where g(x) ≤ f(x), and two line segments x = a, x = b (the line segments may

degenerate into a point). Then the area of the figure is

A =

∫ b

a
(f(x)− g(x)) dx.

Example 4.3. Find the area of the figure bounded by the curves y = x3, y = x2−x in the

interval [0, 1].

Solution: The curves meet at a single point. Solving the equation x3 = x2 − x, we find

the abscissa of the point, x = 0. Hence one of the curves remains above the other in the

whole interval. To know which, we simply substitute into x3 − x2 + x an arbitrary value in

the interval; for x = 1/2 we get x3 − x2 + x|x=1/2 = 0.375 > 0, thus x3 is above x2 − x in

[0, 1]. The area is

A =

∫ 1

0
x3 − (x2 − x) dx =

x4

4
− x3

3
+
x2

2

∣∣∣∣1
0

=

(
1

4
− 1

3
+

1

2

)
− 0 =

5

12
.
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Example 4.4. Find the area of the figure bounded by the curves y = 2− x2, y = x.

Solution: The curves meet at two points. Solving the equation 2 − x2 = x we find that

the points are x = −2, x = 1. Hence one of the curves remains above the other in the

interval [−2, 1]. To know which, we simply substitute into 2− x2 = x an arbitrary value on

the interval [−2, 1]; for x = 0, 2 − x2 − x|x=0 = 2 > 0, thus y = 2 − x2 is above Y = x in

[−2, 1]. The area is

A =

∫ 1

−2
2− x2 − x dx = 2x− x3

3
− x2

2

∣∣∣∣1
−2

=

(
2− 1

3
− 1

2

)
−
(
−4 +

8

3
− 2

)
=

9

2
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