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Simple Regression and Multiple Regression Models

Simple Regression and Multiple Regression Models

Which is the relationship between the simple and multiple regression

models? Let's see an example:

Multiple Regression Model (long model)

wages = β0+β1educ+β2IQ+u

C (educ ,u) = C (IQ,u) = 0

Simple Regression Model (short model)

wages = γ0+ γ1educ+ v

Is there any relationship between γ1 and β1?
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Simple Regression and Multiple Regression Models

γ1 and β1

Using the long model (assuming C (educ,u) = 0 ):

C (educ ,w) = C (educ,β0+β1educ+β2IQ+u)

= β1V (educ)+β2C (educ, IQ)

Comparing both models:

γ1 =
C (educ ,w)

V (educ)
= β1+β2

C (educ , IQ)

V (educ)
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Simple Regression and Multiple Regression Models

Omitted Variable Bias

Then, assuming C (educ,u) = 0:

γ1 = β1+β2

C (educ , IQ)

V (educ)

Note that C(educ,IQ)
V (educ) is the slope in a regression of IQ on educ .

This equation de�nes the Omitted Variable Bias: γ1−β1

There is no OVB (γ1 = β1) if at least one of the two conditions is
veri�ed:

intelligence is not relevant: β2 = 0
education is not correlated with intelligence: C (educ, IQ) = 0
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Simple Regression and Multiple Regression Models

Is γ̂1 a consistent estimator of the parameter of interest?

The parameter of interest is β1

γ̂1 =
Ĉ (educ,wages)

V̂ (educ)
=

Ĉ (educ ,β0+β1educ+β2IQ+u)

V̂ (educ)

= β1+β2

Ĉ (educ, IQ)

V̂ (educ)

⇒ plim (γ̂1) = β1+β2

C (educ, IQ)

V (educ)

plim (γ̂1) = β1 (γ̂1 is consistent ) if

intelligence is not relevant: β2 = 0 or
education is not correlated with intelligence: C (educ, IQ) = 0

We can show that V (γ̂1)≤ V (β̂1)
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Simple Regression and Multiple Regression Models

Uncorrelated Regressors

If educ and IQ are not correlated we get two simple FOC:

β̂1 =
Ĉ(educ,wages)

V̂ (educ)

β̂2 =
Ĉ(IQ,wages)

V̂ (IQ)

Then: β̂1 =
Ĉ(educ,wages)

V̂ (educ)

β̂2 =
Ĉ(IQ,wages)

V̂ (IQ)

the estimates are the same as the OLS estimates in simple linear

regression models:

β̂1 =
Ĉ(educ,wages)

V̂ (educ)
= γ̂1
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Simple Regression and Multiple Regression Models

Correlated Regressors

With correlated regressors, in the long model, FOC are more

complicated:

Ĉ (educ ,wages) = β̂1V̂ (educ)+ β̂2Ĉ (educ, IQ)

Ĉ (IQ,wages) = β̂1Ĉ (IQ,educ)+ β̂2V̂ (IQ)

Dividing the �rst condition by V̂ (educ):

Ĉ(educ,wages)

V̂ (educ)
= β̂1+ β̂2

Ĉ(educ,IQ)

V̂ (educ)

The OLS estimate in the simple model is γ̂1 =
Ĉ(educ,wages)

V̂ (educ)
:

γ̂1 = β̂1+ β̂2
Ĉ(educ,IQ)

V̂ (educ)
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Simple Regression and Multiple Regression Models

Correlated Regressors

Omitted Variable Bias:

γ̂1− β̂1 = β̂2
Ĉ(educ,IQ)

V̂ (educ)

the OLS estimate (γ̂1) captures two e�ects on wages:

1 e�ects of independent changes in educ : β̂1

2 e�ects of changes in IQ associated to changes in educ :

β̂2
Ĉ(educ,IQ)

V̂ (educ)

where Ĉ(educ,IQ)

V̂ (educ)
captures changes in IQ due to changes in educ
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Endogeneity

Conditional Mean Independence

If we estimate the short model when the long model is the true one we

are not identifying the e�ect we want (in this example, the impact of

education on wages). Why?

Because the Conditional Mean Independence assumption is not

satis�ed:

E (v |educ) 6= 0

When the Conditional Mean Independence assumption is not satis�ed,

we say that there is an endogeneity problem.

If for any reason, Xj is correlated with the error term, we say that Xj

is an endogenous variable.
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Solutions

First Application

The instrumental variables method is common in applied economics

when there are endogeneity problems related to omitted variables, as

the one we saw before.

The �rst applications, however, are related to estimations of

elasticities for supply and demand of agricultural goods.

Philip Wright (1928) used the idea of what it will be later called

instrumental variables to estimate the demand elasticity using a simple

demand equation:

ln(Qi ) = β0+β1ln(Pi )+ui , where Q is quantity and P price.

Problem: prices and quantities are jointly determined by the

intersection of supply and demand curves.
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Solutions

First Application (cont.)

Then, an OLS estimation of quantities on prices cannot identify nor

the supply neither the demand curve.

The solution proposed by Wright was two �nd two type of factors:

�(A) a�ecting demand conditions without a�ecting costs conditions or

which (B) a�ecting costs conditions without a�ecting demand

conditions�.

Type (A) factors help to identify the supply curve, type (B) factors

help to identify the demand curve.

Wright proposed several factors: the price of substitutes as a factor

a�ecting demand but not supply, and weather-related variables as

factors a�ecting supply but not demand.
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Solutions IV with one endogenous variable and one instrument

Introduction 1/2

Let's assume we want to estimate the following model:

Yi = β0+β1Xi +ui , where C (X ,u) 6= 0

If C (X ,u) 6= 0, X is an endogenous variable, and OLS yields

inconsistent estimators.

Estimations using Instrumental Variables (IV) use an additional

variable (Z ) to isolate the part of X not correlated with u.

We ask Z to verify two conditions.
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Solutions IV with one endogenous variable and one instrument

Introduction 2/2

The two conditions:

Z is not correlated with the error: C (Z ,u) = 0. Z does not a�ect
directly the variable of interest. Exogeneity
Z is correlated (partial correlation) with X (the endogenous variable):
C (Z ,X ) 6= 0. Relevance

If Z is relevant, its variation is related to the variation in X. If Z is

exogenous, the part of the variation in X captured by Z is exogenous.

The only reason for �nding a relationship between Y and Z is due to

the relevance of Z.

Under these conditions, using Z as IV allows us to obtain consistent

estimators even under endogeneity.
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Solutions IV with one endogenous variable and one instrument

Example 1/3

Example: wage equation

wagei = β0+β1educi +ui

Is it reasonable to assume that C (educi ,ui ) = 0?

We can argue that ability is an omitted variable in the model. If educ

is correlated with ability, the Conditional Mean Independence

assumption will not be valid.

A good instrument needs to be correlated with educ but not with

ability, or any other factor in the error term. Any ideas?
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Solutions IV with one endogenous variable and one instrument

Example 2/3

Some of the instruments for education used in the literature: parental

education, number of siblings, distance to the university, date of birth.

For instance, Card (1995) used wage and education data for a sample

of men in 1976 to estimate the return to education. He estimated a

standard wage equation including other standard controls: experience,

race, region.

He used a dummy variable for whether someone grew up near a four

year college as an instrumental variable for education.
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Solutions IV with one endogenous variable and one instrument

Example 3/3

Relevance: those students who grew up near a four year college are

more likely to attend college (any argument against it?).

Exogeneity: distance should not be related to the ability of individuals

or to any other factor in the error term (any argument against it?).

Card �nds that the IV estimate of the return to education is almost

twice as large as the OLS estimate (13.2% vs. 7.5%), but the

standard error of the IV estimate is over 18 times larger than the OLS

standard error.

The 95% con�dence interval for the IV estimate is from .024 and .239,

which is a very wide range. The price we pay to get a consistent

estimator.
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Solutions IV with one endogenous variable and one instrument

Valid IV: Exogeneity

In the case of one endogenous variable and one instrument is not

possible to test if the instrument is exogenous: C (Zi ,ui ) 6= 0.

In the example of Card (1995), we argue that the distance does not

a�ect the wage through another mechanism. What if the distance is

correlated with family income and family income is an omitted variable

in the wage equation?

In the example of Wright(1928) we need to argue that weather

conditions do not a�ect the demand of the good.
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Solutions IV with one endogenous variable and one instrument

Valid IV: Relevance

The second condition (C (Xi ,Zi ) 6= 0) is veri�able since we observe

both variables:

Regress X on Z (actually on all the exogenous variables):

Xi = π0+π1Zi + vi

Test the hypothesis: H0 : π1 = 0

If we reject H0, we have evidence that X and Z are correlated, and

then Z is relevant.

If we do not reject H0, we say that Z is a weak instrument, a problem

that we will discuss later.
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Solutions IV with one endogenous variable and one instrument

Two Stage Least Squares

If the instrument Z veri�es both conditions, it is possible to get consistent

estimators using the Two Stage Least Squares estimator (TSLS). As it

sounds, TSLS has two stages -two regressions:

In the �rst stage we isolate the part of X that is uncorrelated with u

by regressing X on Z using OLS : Xi = π0+π1Zi + vi

The idea is to use the part of X that can be predicted using Z:

π0+π1Zi . In this �rst stage, we obtain OLS estimates for π0 and π1

and we compute X̂i .

The second stage is the OLS regression of Y on X̂ . Because Z is

exogenous, X̂i = π̂0+ π̂1Zi is not correlated with ui . The estimator in

this second stage is called the TSLS estimator.
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Solutions IV with one endogenous variable and one instrument

Two Stage Least Squares

In applied work, using a specialized command, both stages are

estimated at the same time (as always, we use robust standard errors).

If we do it separately, we need to adjust standard errors in the second

stage since we are using X̂i , an estimated variable.

Formula: very simple in the case of one endogenous regressor and one

instrument:

β̂
TSLS
1 =

sZY

sZX
,

where s represents the sample covariance between two variables.

We can show that TSLS is a consistent estimator and normally

distributed in large samples.
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Solutions IV with one endogenous variable and one instrument

TSLS: Consistency

Let's start with the simple model: Yi = β0+β1Xi +ui and apply covariance

properties:

C (Z ,Y ) = β1C (Z ,X )+C (Z ,u)

Under exogeneity of the instrument: C (Z ,u) = 0 and

β1 = C (Z ,Y )/C (Z ,X ). Since the sample covariance is a consistent

estimator of the covariance we can show that:

β̂
TSLS
1 =

sZY

sZX

p−→ C (Z ,Y )

C (Z ,X )
= β1
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Solutions IV with one endogenous variable and one instrument

TSLS vs OLS

TSLS:

β̂TSLS
1 =

sZY

sZX
The bias without imposing exogeneity of Z:

β̂TSLS
1

p−→ C (Z ,Y )

C (Z ,X )
= β1+

C (Z ,u)

C (Z ,X )
.

The bias then depends on two conditions: exogeneity and relevance.

OLS:

β̂OLS
1 =

sXY

s2X

We obtain the bias similarly:

β̂OLS
1

p−→ C (X ,Y )

V (X )
= β1+

C (X ,u)

V (X )
.

The bias depends on the exogeneity of X .
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Solutions IV in the General Model

General Model

Yi = β0+β1X1i +β2X2i + ...+βkXki

+βk+1W1i + ...+βk+rWri +ui

We may have more controls: some endogenous (X1, ...,Xk , potentially

correlated with u) and some exogenous (W1, ...,Wr , not correlated

with u).

To apply TSLS we need at least as many instruments (denoted as

Z1,Z2, ...,Zm) as endogenous variables (m ≥ k).

The coe�cients are exactly identi�ed if there are just enough

instruments to estimate the parameters of the model (m = k). The

coe�cients are overidenti�ed if there are more instruments than

endogenous regressors (m > k).
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Solutions IV in the General Model

TSLS: several instruments

Yi = β0+β1X1i +β2W1i + ...+β1+rWri +ui

With more than one instrument for X1 we would have more than one

possible IV estimator, but none of them is e�cient: the best

instrument is a linear combination of all possible instruments.

First stage (X1 on the m instruments and the r exogenous controls):

X1i = π0+π1Z1i + ...+πmZmi +πm+1W1i + ...+πm+rWri + vi

Second stage: Yi on X̂i and the exogenous controls in the original

equation (W1i , ...,Wri ) using OLS.

Relevance condition: at least one Z useful to predict X1, given the

W ′s.

Exogeneity condition: each Z needs to be uncorrelated with u.
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Solutions IV in the General Model

TSLS: several endogenous regressors

Similar TSLS procedure as before, only that each endogenous

regressor needs its own �rst stage regression. Each one of these

regressions include the same controls: all the instruments and all the

exogenous controls from the original equation.

Second stage: Yi on all the X̂j and the exogenous controls in the

original equation (W1i , ...,Wri ) using OLS.

Again, in our applications, we estimate both stages automatically

using gretl. In this way we get the correct standard errors.
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Tests

Testing for Endogeneity: Hausman Test

If there is no endogeneity in the original model, both estimators, OLS

and TSLS are consistent, but OLS is more e�cient. Remember the

Card example.

Under endogeneity only TSLS is consistent.

Therefore, it is important to have a test for endogeneity. We use the

Hausman test for endogeneity (H0 : Exogeneity).
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Tests

Testing for Endogeneity 1/2

Given the following simpli�ed model:

Yi = β0+β1X1i +β2W1i +ui

.
If we have an additional exogenous variable (Z1), we can apply a

two-step procedure to test if X1 is an endogenous variable:

First Step: regress X1 on all the exogenous variables (in our example

W1 and Z1) and compute the residuals: v̂ .

X1 = π0+π1Z1+π2W1+ v

Under exogeneity of X1, because Z1 and W2 are not correlated with u

(by assumption), the residuals v̂ should neither be.
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Tests

Testing for Endogeneity 2/2

Second Step: estimate the original model adding v̂ to the equation:

Yi = β0+β1X1i +β2W1i +α v̂i + εi

Test the null hypothesis that X1 is exogenous. Under this null, the

coe�cient of v̂ should be not signi�cant: H0) α = 0.

If we reject H0, we have evidence against X1 being exogenous, then

against using OLS.

Note that we need an exogenous instrument to carry out this test.
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Tests

Instruments validity: relevance

With one endogenous regressor and several instruments:

Yi = β0+β1X1i +β2W1i +ui , with m additional exogenous variables:

Z1, ...,Zm.

Relevance is checked in the �rst stage regression:

X1i = π0+π1Z1i +π2Z2i + ...+πmZmi +πm+1W1i + vi

We test the null hypothesis that the coe�cients of the instruments are

jointly zero: H0)π1 = ...= πm = 0. The F-statistic is a measure of

how much information is included in the instruments.

�Weak� instruments explain very little of the variation in X1, beyond

that explained by the W ′s (simple rule: F below 10).
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Tests

Weak instruments

If instruments are weak, the sampling distribution of TSLS and its

t-statistic are not (at all) normal, even with n large. Statistical

inference will not be correct.

What to do? Get better instruments (not easy...)

If you have many instruments, some are probably weaker than others

and you can try dropping the weaker ones until you �nd a set that can

be considered relevant.
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Tests

Exogeneity

If the coe�cients are exactly identi�ed we cannot test if the

instruments are exogenous.

If we have more instruments than endogenous variables, we can test

the overidentifying restrictions (we use a Sargan test).

The test allows us to know if the additional instruments are exogenous.
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Tests

Overidenti�cation Test

1 First Step: Estimate the original model by TSLS and obtain the TSLS

residuals (ûTSLS).

2 Second Step: Regress the residuals on all the exogenous variables

(using OLS):

ûTSLS = δ0+δ1Z1i + ...+δmZmi +δm+1W1i + ...+δm+rWri + vi

Compute nR2. Under the null hypothesis that the additional

instruments are exogenous:

LM = nR2→ χ2
q

where q is the number of additional instruments (the degree of

overidenti�cation).
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Application

Application

We are interested in knowing the elasticity of demand for cigarettes.

We use annual data on cigarette consumption and average prices paid

by end consumer for the US. We use the following equation where Qi

is the number of packs sold per capita and Pi the real price in state i .

ln(Qi ) = β0+β1ln(Pi )+ui

Is it correct to use OLS to estimate β1?

If we want to apply TSLS we need at least one instrument. One

candidate is the general sales tax per pack in each state: Taxi .
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Application

Application (cont.)

Conditions for a valid instrument:
1 Relevance: correlated with P

Using 1995 data the results from the �rst stage regression are (�le
cig_ch10.gdt):

l̂n(Pi ) = 4.6165
(0.0289)

+0.0307
(0.0048)

Tax T = 48 R2 = 0.4710

The estimated coe�cient of Tax is positive and signi�cantly di�erent
than 0: more taxes higher after-tax prices. Variation in taxes explains
47% of the variation in prices among states.

2 Exogeneity: it is not possible to check it formally. Argument: taxes
a�ect the demand of cigarettes only through the price.
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Application

Application (cont.)

TSLS estimation using Tax as an instrument for P , with robust

standard errors:

l̂n(Qi ) = 9.7199
(1.5283)

−1.0836
(0.3189)

ln(Pi )

A 1% increase in price decreases consumption on average by 1.08%.

Potential problem: omitted variables correlated with taxes: if that's

the case Tax will not be exogenous.

For instance, states with higher income levels could also have lower

taxes, and higher consumption levels.
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Application

Application (cont.)

To try to solve this problem we include income in the regression (and

assume it is exogenous):

ln(Qi ) = β0+β1ln(Pi )+β2ln(Ingi )+ui

TSLS with Tax as an instrument for P , with robust standard errors:

l̂n(Qi ) = 9.4307
(1.2594)

−1.1434
(0.3723)

ln(Pi )+0.2145
(0.3117)

ln(Inci )

We used only one instrument: demand elasticity exactly identi�ed.

We could try to add another instrument: one candidate is the

cigarette-speci�c tax (CigTax). With two instruments demand

elasticity is overidenti�ed.
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Application

Application (cont.)

TSLS with Tax and CigTax as instruments for P , with robust

standard errors:

l̂n(Qi ) = 9.8950
(0.9592)

−1.2774
(0.2496)

ln(Pi )+0.2804
(0.2539)

ln(Inci )

Compare the standard errors.

Are these estimations reliable? Depends on the validity of the

instruments.
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Application

Application (cont.)

Relevance: �rst stage regression:

ln(Pi ) = π0+π1Taxi +π2CigTaxi +π3ln(Inci )+ui

We test H0)π1 = π2 = 0, and the corresponding F-statistic is 209.676.

We reject the null hypothesis that the instruments are weak.

Exogeneity: with two instruments and one endogenous variable it is

possible to run an overidenti�cation test. The F-statistic from the

Sargan test is 0.33, and given the χ2
1 distribution of this statistic, the

p-value is 0.5641. Then, we do not reject the null that both

instruments are exogenous.
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IV papers - Angrist and Krueger
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Example

Example

Using the �le mroz.gdt, which has information on the participation of

women in the labor market, we estimate the following wage equation:

lwage = β0+β1educ+β2exp+β3exp2+ ε

1 Analyze if educ is an exogenous variable (use husband and parents'

education as exogenous variables).

2 Discuss if husband and parents' education are good instruments for

educ .

3 Estimate the e�ect of education on wages using the more appropriate

method: OLS or TSLS.
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