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Introduction: Linear Regression
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Introduction

Introduction to the Simple Linear Regression Model 1/2

Much of applied econometric analysis begins with the following

premise: Y and X are two variables, and we are interested in

“explaining Y in terms of X ”, or in “studying how Y varies with

changes in X ”.

In order to do that, we must consider three issues:
1 there is never an exact relationship between two variables
2 we need to specify the functional relationship between Y and X
3 how can we be sure we are capturing a ceteris paribus relationship

between Y and X (if that is a desired goal)?
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Introduction

Introduction to the Simple Regression Model 2/2

In the Simple Linear Regression Model the relationship between the

variable we want to explain (Y ) and the explanatory variable (X ) is

expressed as follows:

Y = β0 + β1X + ε

where ε represents the error term (unobservable) and β0 and β1 the

population parameters.

ε represents all the factors other than X that affect Y . In the simple

regression model we assume that all these other factors are

unobserved.
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Introduction

Example of Simple Regression Model

Example

wage = β0 + β1educ + ε

The error term (ε) can include different variables like: experience,
capacity or ability, other personal characteristics like age, sex, . . .
Under certain assumptions, we will capture a ceteris paribus
relationship between wage and educ
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Introduction Assumptions

Assumptions of the Simple Regression Model

1 Linear in parameters.

Not very restrictive, we are able to model non linear relationships in

variables.

2 Zero Conditional Mean: E (ε|X ) = 0
This assumption implies:

1 E (ε) = 0 and
2 C (h(X ),ε) = 0, where h(X ) is any function of X . In particular implies

C (X ,ε) = 0

3 Observations are drawn from random distributions.

Too strong in some applications. For example, if we want to study

female wages and we observe the salaries of working women.
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Introduction Assumptions

Example

wage = β0 + β1educ + ε

In order to simplify the discussion we can assume that ε is innate
ability.
E (ability |educ = 0) denotes the average ability for the group of people
with no education, and E (ability |educ = 12) denotes the average
ability among people in the population with 12 years of education.
Then the zero conditional mean assumption implies that
E (ability |educ = 0) = E (ability |educ = 12). In fact, the average level
of ability is the same for all levels of education.
Since we do not observe innate ability, there is no way of knowing
whether or not average ability is the same for all levels of education.
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Introduction Assumptions

Potential Violations of Conditional Mean Independence

Model proposed is wrongly specified
Example: wages do not depend linearly on educ

Explanatory variables are potentially correlated with missing variables
Example: We do not control for ability and ability correlated with educ

Measurement error in explanatory variables

Example: a proxy to ability (IQ) is included, but measured with error

Explanatory variables simultaneously determined with Y

Example: The level of education chosen depends on the expected
returns to education
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Introduction Interpretation of the coefficients

Interpretation of the coefficients in the Simple Regression
Model

Given the two first assumptions (Linearity and Zero Conditional

Mean), it is true that the population regression function (PRF) is a

linear function of X :

E (Y |X ) = β0 + β1X

Therefore the PRF is exactly the linear projection of Y given X and

the slope β1 has a causal interpretation.
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Introduction Interpretation of the coefficients

Interpretation of the coefficients in the Simple Regression
Model

The slope parameter:

β1 =
∆E (Y |X )

∆X

when X changes in one unit, Y changes on average β1 units, holding

the other factors in ε fixed.

The constant term β0 (intercept parameter) is interpreted as the

average value for Y when X = 0: E (Y |X = 0). In practice, this term

does not always have a useful interpretation. Nevertheless we always

include a constant in our models.

Note that if E (ε|X ) 6= 0 the parameters do not have a causal

interpretation.
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Introduction Interpretation of the coefficients

Example

ˆwage =−0.90+0.54educ

where the hourly wage is measured in euros and education in years.

The slope measures the change in hourly wage given another year of
education, holding all other factors fixed. In this case, one more year
of education (for any level), increases the hourly wage in 54 cents.

With respect to the constant term, our estimation says that a worker
with no education would earn an average hourly wage of -90 cents.
This nonsense is explained by the fact that in our sample there is no
worker with no education, the minimum value for educ is 8 years.
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Introduction Estimation

Estimation: Analogy Principle

Our goal is to estimate the population parameters of the model. To

do that we use a sample of the population. For that random sample

we can write:

Yi = β0 + β1Xi + εi ,

for each i , where E (εi |Xi ) = 0 and V (εi |Xi ) = σ2, ∀i = 1, ...,n

One way to obtain estimators for the parameters is using the analogy

principle. The idea is to use the corresponding sample quantity as an

estimate of the population quantity.
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Introduction Estimation

Estimation: Analogy Principle

Under the assumptions of the simple regression model if we minimize

the variance of ε :

E (ε
2) = E [(Y −β0−β1X )2]

we get the formulas for the population parameters:

β0 = E (Y )−β1E (X )

β1 =
C (Y ,X )

V (X )
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Introduction Estimation

Estimation: Analogy Principle

We have then the population parameters in terms of population

moments (Expected values, Covariances, Variances).

Applying the analogy principle we obtain estimators for β0 and β1.

β̂0 = Ȳ − β̂1X̄

β̂1 =
∑(X − X̄ )(Y − Ȳ )

∑(X − X̄ )2
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Introduction Estimation

Estimation: OLS Criteria

The same estimators can be obtained minimizing the variance of the

sample analog of the errors: the residuals.

The residuals are the difference between the observed value and the

predicted value:

ε̂i = Yi − Ŷi = Yi −
(

β̂0 + β̂1Xi

)
.

If we minimize ∑ ε̂i
2, we get the same formulas as using the analogy

principle. These estimators then can be interpreted as those

estimators that minimize the sum of the squared residuals: the

Ordinary Least Squares (OLS) estimators.
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Introduction Estimation

Estimation: OLS Criteria

The first order conditions are:

∑ ε̂i = 0

∑ ε̂iXi = 0

Note that these conditions are the sample analog of

E (ε) = 0

C (X ,ε) = 0

Once we have determined the OLS intercept and slope estimates, we

form the OLS regression line: Ŷ =
(

β̂0 + β̂1X
)
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Multiple Linear Regression Model Introduction

Multiple Linear Regression Model

Clearly most economic relations involves more than two variables,

therefore we are going to include as many variables as necessary:

Y = β0 + β1X1 + β2X2 + ...+ βKXK + ε

Multiple regression models are more adequate for ceteris paribus

analysis because they allow us to explicitly control for many other

factors which simultaneously affect the dependent variable.
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Multiple Linear Regression Model Assumptions

Assumptions 1/2

1 Linear in parameters.

2 Zero Conditional Mean: E (ε|X1,X2, ...,XK ) = 0
This assumption implies:

1 E (ε) = 0 and
2 C (h(Xj ),ε) = 0, where h(Xj ) is any function of Xj . In particular,

C (Xj ,ε) = 0
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Multiple Linear Regression Model Assumptions

Assumptions 2/2

3 Observations are drawn from random distributions.

4 We need an additional assumption: No Perfect Multicollinearity:

(X1,X2, ...,XK ) do not produce a perfect linear combination.

Technical: Invertibility of Variance-covariance Matrix
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Multiple Linear Regression Model Interpretation of the coefficients

Interpretation

Now the coefficients have partial effect, or ceteris paribus,

interpretations:

βj =
∆E (Y |X )

∆Xj

where X represents the vector of explanatory variables: X1,X2, ...,XK

The coefficient on Xj measures the change in Y due to a one-unit

increase in Xj , holding all other independent variables fixed.
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Multiple Linear Regression Model Interpretation of the coefficients

Example

ˆwage =−2.87+0.60educ +0.02exper +0.17tenure

where the hourly wage is measured in euros and education, exper (labor
market experience), and tenure (years with the current employer) in years.

Now the coefficients have a ceteris paribus interpretation.

The coefficient on educ measures the change in hourly wage given
another year of education, holding experience and tenure fixed. In this
case, one more year of education (for any level), increases the hourly
wage in 60 cents.

Alternatively, if we take two people with the same levels of experience
and job tenure, the coefficient on educ is the proportionate difference
in predicted wage when their education levels differ by one year.
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Multiple Linear Regression Model Interpretation of the coefficients

A “partialling-out” Interpretation: Multiple Regression

True Model
Y = β0 + β1X1 + β2X2 + ...+ βkXk +u

Two-step procedure
1 OLS regress X1 on constant and X2, ...,Xk , and get residuals û1

2 OLS regress Y on û1

û1 captures sample changes in X1 which are uncorrelated with the rest
of the regressors (alternatively, û1 is X1 once the effects of the rest of
the regressors have been partialled out).

the estimated slope in the second regression is β̂1

β̂1 can be expressed as: (∑ û1iYi )

(∑ û1i
2)
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Multiple Linear Regression Model Interpretation of the coefficients

A “partialling-out” Interpretation - Example

True Model
wages = α0 + α1educ + α2IQ +u

Two-step procedure
1 OLS regress educ on constant and IQ, and get residuals û1

2 OLS regress wages on û1

û1 captures sample changes in educ uncorrelated with changes in IQ

the estimated slope in the second regression is α̂1
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Multiple Linear Regression Model Interpretation of the coefficients

Venn Diagrams for Multiple Regression Model1

Each circle represents sample
variation in the corresponding
variable.
In a simple model (y on X), OLS
uses Blue + Red to estimate βX

When y is regressed on X and
W: OLS throws away the red
area and just uses blue to
estimate βX

Idea: red area is contaminated
(we do not know if the
movements in y are due to X or
to W ).
What is the effect of omitting
W then?

1From Kennedy(2002)
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Multiple Linear Regression Model Interpretation of the coefficients

Multicollinearity

In the case of considerable collinearity, OLS are still consistent estimators.

However, since we use less information (compare the blue and green areas

in both figures), the estimation is less precise.
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Goodness of Fit

Goodness of Fit

The Variance Decomposition

Each observation of Yi is made up of two components: Yi = Ŷi + ûi

the fitted values: Ŷi = β̂0 + β̂1X1i + ....+ β̂kXki

the OLS residual: ûi = Yi − Ŷi

We can define the total sum of squares (SST), the explained sum of

squares (SSE), and the residual sum of squares or sum of squared

residuals (SSR), as

SST = ∑(Yi − Ȳ )2

SSE = ∑(Ŷi − Ȳ )2

SSR = ∑(ûi )
2
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Goodness of Fit

The R2

SST = SSE +SSR

Solving for SSE and dividing by SST :
SSE

SST
= 1− SSR

SST
≡ R2

the R2 is the proportion of the sample variation in Yi explained by the

regression line: 0≤ R2 ≤ 1

it never decreases when a new regressor is added
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Most usual specifications

Linear in the exogenous variables

E (Y |X ) = β0 + β1X ,

As we saw before, in this case

β1 =
∆E (Y |X )

∆X

If X varies in 1 unit, Y varies on average β1 units of Y .

What’s the elasticity in this case?

η =
∆E (Y |X )/E (Y |X )

∆X/X
= β1

X

E (Y |X )

Note that the elasticity depends on the specific values of X and Y, and

therefore it is not constant.
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Most usual specifications

Semilogarithmic models: log in the exogenous variable

E (Y |X ) = β0 + β1lnX ,

β1 =
∆E (Y |X )

∆lnX
≈ ∆E (Y |X )

∆X/X

To express the impact of the variation in X in percentage terms we

divide and multiply by 100:

β1/100≈
∆E (Y |X )

100∆X/X

If X changes 1%, Y changes on average β1/100 units (β1 is a

semi-elasticity).
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Most usual specifications

Semilogarithmic models: log in the dependent variable

E (lnY |X ) = β0 + β1X ,

β1 =
∆E (lnY |X )

∆X
≈ E (∆Y /Y |X )

∆X

To express the variation in Y in percentage terms we multiply by 100:

100β1 ≈
E ((100×∆Y /Y )|X )

∆X

If X changes in one unit, Y changes on average 100β1%.
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Most usual specifications

Double log model

This model is used for example when we want to model a constant

elasticity between X and Y .

E (lnY |X ) = β0 + β1lnX ,

β1 =
∆E (lnY |X )

∆lnX
≈ E ((∆Y /Y )|X )

∆X/X

If X changes 1%, Y changes on average β1 %: β1 represents the

elasticity of Y with respect to X .
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Most usual specifications

Model with quadratic terms

This model is used for example when modeling increasing or

decreasing marginal returns.

E (Y |X ) = β0 + β1X + β2X
2,

Then,

∆E (Y |X )

∆X
= β1 +2β2X

If X changes one unit, Y changes on average β1 +2β2X . The

marginal effect of X on Y depends on the sign of β2.
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Most usual specifications

Example

The file gasoline.gdt contains information about the US gasoline market for

the years 1960-1995. The variable pcgas is the per capita gasoline

consumption and inc is per capita disposable income measured in dollars.

In each point, estimate the model, give an interpretation for β1 and

compute the elasticity of pcgas with respect to inc .

1 pcgas = β0 + β1inc + ε

2 pcgas = β0 + β1log(inc) + ε

3 log(pcgas) = β0 + β1log(inc) + ε

4 log(pcgas) = β0 + β1log(inc) + β2log(Pg ) + ε , where Pg is the price

of gasoline. Compute the price elasticity
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Small Sample Properties of OLS estimators

Properties of OLS estimators

Unbiasedness (under linearity and zero conditional mean assumptions)

E
(

β̂0

)
= β0

E
(

β̂1

)
= β1

Remember that unbiasedness is a feature of the sampling distributions
of the estimators, which says nothing about the estimate that we obtain
for a given sample. We hope that, if the sample we obtain is somehow
“typical”, then our estimate should be “near” the population value.
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Large Sample Properties of OLS Estimators

The Notion of Large Sample Properties

we look at properties as the sample size n gets larger and larger:

1 how far is β̂j from the true parameter βj as n→ ∞?

2 how does the distribution of β̂j look as n→ ∞?
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Large Sample Properties of OLS Estimators

A Law of Large Numbers (1/2)

it essentially states that the average of the results obtained from a

large number of trials will tend to become closer to the expected value

as more trials are performed

the LLN is important because it “guarantees” stable long-term results

for random events

it does not say that a streak of one value will immediately be

“balanced” by the others (the Gambler’s fallacy)
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Large Sample Properties of OLS Estimators

A Law of Large Numbers (2/2)

Theorem
For any random variable y with an expected value µ define the average of
a sample of size n as yn. Then

plim (yn) = µ

plim ( ˆcov(y ,x)) = cov(y ,x)

plim ( ˆvar(x)) = var(x)
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Large Sample Properties of OLS Estimators

plim Properties

Continuous Mapping Theorem

For every continuous function?g(·) and random variable x :

plim (g(x)) = g(plim(x))

Example 1

plim(x + y) = plim(x) +plim(y)

Example 2

plim
(
x
y

)
= plim(x)

plim(y) if plim(y) 6= 0
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Large Sample Properties of OLS Estimators

Convergence in Probability

Definition

As the sample size grows, any positive distance between β̂j and βj becomes
arbitrarily unlikely

βj is probability limit of β̂j

β̂j converges in probability to βj

plim(β̂j) = βj
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Large Sample Properties of OLS Estimators

OLS Consistency

Theorem
Under linear regression model assumptions, OLS is consistent

Example: wages = β0 + β1educ +u with cov(educ ,u) = 0

β̂1 = β1 + ˆcov(educi ,ui )
ˆvar(educi )

plim
(

β̂1

)
= plim (β1) + plim( ˆcov(educi ,ui ))

plim( ˆvar(educi ))
= β1 + cov(educ,u)

var(educ)

Since cov(educ ,u) = 0⇒ plim
(

β̂1

)
= β1
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Large Sample Properties of OLS Estimators

A Graphical Interpretation of Consistency
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Large Sample Properties of OLS Estimators

An Example of Inconsistency

True Model: wages = β0 + β1educ + β2IQ + v

cov(educ ,v) = cov(IQ,v) = 0
cov(educ , IQ) 6= 0, β2 6= 0

Estimated equation by OLS: wages = γ̂0 + γ̂1educ + ûeduc

γ̂1 = β̂1 + β̂2
ˆcov(educ,IQ)
ˆvar(educ) ⇒ plim (γ̂1) = β1 + β2

cov(educ,IQ)
var(educ)

plim (γ̂1) 6= β1 if

intelligence is relevant:β2 6= 0
education is correlated to intelligence: cov(educ , IQ) 6= 0
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Large Sample Properties of OLS Estimators

The Central Limit Theorem

Theorem

For any random variable y with an expected value µ and variance σ2

define the average of a sample of size n as yn. Then

n
1
2
yn−µ

σ
→ N(0,1)as n→ ∞

what is remarkable about the CLT is that the distribution of the

random variable y is irrelevant

the crucial issue is the averaging carried out over y
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Large Sample Properties of OLS Estimators

Asymptotic Normality for OLS Estimators

Under the Linear Regression Model Assumptions

n
1
2

β̂j −βj

aj
→ N(0,1)as n→ ∞ where aj ² = Asy .Var

(
n

1
2 β̂j

)
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Large Sample Properties of OLS Estimators

(Robust) Standard Errors

we can estimate aj consistently: se
(
n

1
2 β̂j

)
As sample size n increases, the OLS estimators—conveniently scaled

up—get as close as we want to a normal distribution...

n
1
2 β̂j ≈ N (βj ,aj ²)

we can approximate the standard deviation of β̂j ,

sd
(

β̂j

)
≈ aj

n1/2
≈ se

(
β̂j

)
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Large Sample Properties of OLS Estimators

(Robust) Standard Errors

these standard errors are “robust-to-heteroskedasticity”

one important “detail”: in most computer packages, the “standard

error” reported is not se
(

β̂j

)
but one which is valid under unrealistic

assumptions (homoskedasticity)

Conditional Homoskedasticity : V (ε|X ) = σ2

In the wage equation, we can interpret this assumption as innate

ability having the same dispersion for different levels of education. It

implies also that the dispersion of wages does not depend on the level

of education. For instance, V (wage|educ = 0) = V (wage|educ = 12).

What if people with very low levels of education have very few

opportunities and must work at the minimum wage?
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Hypothesis Testing The t test

The t Test

from the CLT (and a LLN), it can also be shown that

t =
β̂j −βj

se
(

β̂j

) → N (0,1) as n→ ∞

this result can be used for example, to test whether a coefficient is

significant
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Hypothesis Testing The t test

The Significance Test

Example: wages = β0 + β1educ + β2IQ +u

we want to check that ability significantly affects wages ceteris paribus

we set up the null we expect to reject

null hypothesis: H0 : β2 = 0 (IQ does not affect wages ceteris paribus)

alternative hypothesis: H1 : β2 6= 0 (IQ affects wages ceteris paribus)
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Hypothesis Testing The t test

Testing Single Parameters

under the null, t =
β̂j−βj

se(β̂j)
≈ N (0,1)

to reject the null we must find sufficient evidence against it
“sufficient evidence” would be that t is very large in absolute value:
we control the probability that we-reject-the-null-but-should-not (the
significance level)

fix the significance level, α%, and define critical value (cα), such that

Pr(|t| ≥ cα ) = α

if |t|> cα , reject the null at 1−α% of confidence.
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Hypothesis Testing The t test

Critical Values

If we fix the significance level at 10%, the critical value is 1.65

simple rule of thumb for a 5% significance level: if |t| larger than 2, reject

the null.
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Hypothesis Testing The t test

For a one tail test, if we fix the significance level at 10%, the critical value

is 1.28. If t is larger than the critical value, we reject the null in favor of

the alternative that the parameter is greater than the value under the null.
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Hypothesis Testing The t test

Power of the t Test

we control the probability that we-reject-but-we-should-not by fixing

the significance level: this is called the “Type I error”

in any test, we can incur in a so-called “Type II error”:

we-do-not-reject-but-we-should

the probability that we-reject-when-we-should is called “the power of

the test” and clearly depends on the alternative

in practice, if we reject we are ok, if we do not, perhaps the test has

no power...
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Hypothesis Testing The t test

p-values

an alternative to the classical approach is to ask, “what is the smallest

significance level at which the null would be rejected?”

to answer this question, we first compute the t statistic

then we look up at the mass probability under the null larger than the

actual value we get

this is the p-value

most computer packages will compute the p-value in a two-sided test
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Hypothesis Testing Testing a Linear Combination

Testing a Linear Combination

Given the following null hypothesis H0 : ∑ajβj = a0, we define the

following statistic:

t =
∑aj β̂j −a0

s
∑aj β̂j

We can show that t ∼· N(0,1). Note that in order to carry out this

test, it is necessary to know or estimate the variance of the linear

combination. That implies the need of knowing or estimating

covariances between estimators.

Alternatively we can redefine the model in order to obtain directly the

statistic we need.
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Hypothesis Testing Testing a Linear Combination

Example: wages = β0 + β1educ + β2exper + β3IQ +u

we want to test if the return to experience is the same as the return to
education

H0)β1 = β2 and H0)β1 6= β2

Define a new parameter θ = β1−β2 and rewrite the model

wages = β0 + θeduc + β2(educ + exper) + β3IQ +u

now we simply use the t statistic for the significance of θ̂

53 / 58



Hypothesis Testing Testing Several linear restrictions

Testing Several linear restrictions 1/3

A test that includes several linear restrictions is like this:

βj = βk = βl = 0

When we want to test several restrictions, we need to distinguish the

unrestricted and restricted models.

The unrestricted model is the one in which we want to test our

hypothesis, the original model. The restricted model is the model once

we impose the null hypothesis.
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Hypothesis Testing Testing Several linear restrictions

Testing Several linear restrictions 2/3

For each model we compute the sum of the residuals squared and

define the following statistic:

W 0 = n
SRR−SRS

SRS
∼· χ

2
q

where SRR represents the sum of the residuals squared in the restricted

model, SRS the sum of the residuals squared in the unrestricted model

and q the number of restrictions in the null hypothesis.

An equivalent statistic is:

F = n
SRR−SRS

qSRS
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Hypothesis Testing Testing Several linear restrictions

Testing Several linear restrictions 3/3

W 0 (or F ) is never negative, since SRR ≥ SRS

Alternatively, when the dependent variable in both models is the same,

we can express the statistic in terms of the R2:

W 0 = n
R2
S −R2

R

1−R2
S

∼· χ
2
q

where R2
R represents the R2 in the restricted model and R2

S the R2 in

the unrestricted model.
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Hypothesis Testing Testing Several linear restrictions

Example: wages = β0 + β1educ + β2exper + β3IQ +u

H0 : β1 = β2 = 0 vs H1 : H0 false

we cannot reparametrize so that we can get the test we want from the
standard output
we can carry out the W statistic
Restricted Model: wages = β0 + β3IQ +u , and q = 2
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Hypothesis Testing Testing Several linear restrictions

Joint Significance

The most usual case of this tests is the joint significance test. Starting

with the following model:

Y = β0 + β1X1 + β2X2 + ...+ βKXK + ε

The null hypothesis, that none of the variables are relevant, includes K

linear restrictions:

H0 : β1 = β2 = ... = βK = 0

The restricted model is Y = β0 + ε , and the statistic we need is:

W 0 = n
R2
S

1−R2
S

∼· χ
2
K
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