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Binary Dependent Variables: What is Different?

So far the dependent variable (Y) has been continuous:

district-wide average test score
traffic fatality rate

What if Y is binary?

Y = get into college, or not; X = high school grades, SAT scores,
demographic variables
Y =person smokes, or not; X = cigarette tax rate, income,
demographic variables
Y = mortgage application is accepted, or not; X = race, income, house
characteristics, marital status
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Example: Mortgage Denial and Race The Boston Fed
HMDA Dataset

Individual applications for single-family mortgages made in 1990 in

the greater Boston area

2380 observations, collected under Home Mortgage Disclosure Act

(HMDA)

Variables

Dependent variable: Is the mortgage denied or accepted?
Independent variables: income, wealth, employment status, other loan,
property characteristics, and race of applicant.
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Linear Probability Model

A natural starting point is the linear regression model with a single

regressor:

Yi = β0 + β1Xi + µi

But:

What does β1 mean when Y is binary?

What does the line β0 + β1X mean when Y is binary?

What does the predicted value Ŷ mean when Y is binary? For

example, what does Ŷ = 0.26 mean?
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Linear Probability Model

When Y is binary:

E (Y |X ) = 1xPr(Y = 1|X ) + 0xPr(Y = 0|X ) = Pr(Y = 1|X )

Under the assumption, E (ui |Xi ) = 0, so

E (Yi |Xi ) = E (β0 + β1Xi +ui |Xi ) = β0 + β1Xi ,

so,

E (Y |X ) = Pr(Y = 1|X ) = β0 + β1Xi

In the linear probability model, the predicted value of Y is interpreted as

the predicted probability that Y = 1, and β1 is the change in that

predicted probability for a unit change in X .
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Linear Probability Model

- When Y is binary, the linear regression model

Yi = β0 + β1Xi + µi

is called the linear probability model because

Pr(Y = 1|X ) = β0 + β1Xi

- The predicted value is a probability:

-E (Y |X = x) = Pr(Y = 1|X = x) = prob. that Y = 1 given X = x

-Ŷ = the predicted probability that Y = 1 given X

-β1 = change in probability that Y = 1 for a unit change in x:

β1 = Pr(Y=1|X=x+∆x)−Pr(Y=1|X=x)
∆x
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Example: linear probability model, HMDA data

- Mortgage denial v. ratio of debt payments to income (P/I ratio) in a

subset of the HMDA data set (n = 127)
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Example: linear probability model, HMDA data

d̂enyi = β̂0 + β̂1PIi + β̂2blacki

Model 1: OLS, using observations 1–2380
Dependent variable: deny

Heteroskedasticity-robust standard errors, variant HC1

Coefficient Std. Error t-ratio p-value

const −0.0905136 0.0285996 −3.1649 0.0016
pi rat 0.559195 0.0886663 6.3067 0.0000
black 0.177428 0.0249463 7.1124 0.0000

Mean dependent var 0.119748 S.D. dependent var 0.324735
Sum squared resid 231.8047 S.E. of regression 0.312282
R2 0.076003 Adjusted R2 0.075226
F (2,2377) 49.38650 P-value(F ) 9.67e–22
Log-likelihood −605.6108 Akaike criterion 1217.222
Schwarz criterion 1234.546 Hannan–Quinn 1223.527
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The linear probability model: Summary

-Advantages:

- simple to estimate and to interpret

- inference is the same as for multiple regression (need

heteroskedasticity-robust standard errors)
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The linear probability model: Summary

- Disadvantages:

-A LPM says that the change in the predicted probability for a given

change in X is the same for all values of X, but that doesn’t make sense.

Think about the HMDA example?

-Also, LPM predicted probabilities can be < 0 or > 1!

-These disadvantages can be solved by using a nonlinear probability model:

probit and logit regression
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Probit and Logit Regression

- The problem with the linear probability model is that it models the

probability of Y=1 as being linear:

Pr(Y = 1|X ) = β0 + β1X

- Instead, we want:

i. Pr(Y = 1|X ) to be increasing in X for β1 > 0, and

ii. 0≤ Pr(Y = 1|X )≤ 1 for all X

- This requires using a nonlinear functional form for the probability. How

about an ”S-curve”?
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S-curve function candidates
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Probit regression

- Probit regression models the probability that Y=1 using the cumulative

standard normal distribution function, Φ(z), evaluated at z = β0 + β1X .

The probit regression model is,

Pr(Y = 1|X ) = Φ(β0 + β1X )

- where Φ(.) is the cumulative normal distribution function and

z = β0 + β1X . is the z−value or z− index of the probit model.

- Example: Suppose β0 =−2 , β1 = 3, X = .4, so

Pr(Y = 1|X = .4) = Φ(−2 + 3∗ .4) = Φ(−0.8)

Pr(Y = 1|X = .4) = area under the standard normal density to left of

z =−.8, which is . . .
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Probit regression
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Logit regression

Logit regression models the probability of Y=1, given X, as the cumulative

standard logistic distribution function, evaluated at z = β0 + β1X :

Pr(Y = 1|X ) = F (β0 + β1X )

where F is the cumulative logistic distribution function:

F (β0 + β1X ) = 1
1+e−(β0+β1X )
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Logit regression

- Example: Suppose β0 =−3 , β1 = 2, X = .4, so

Pr(Y = 1|X = .4) = 1
1+e−(−3+2∗0.4) = 0.0998

Why bother with logit if we have probit?

-The main reason is historical: logit is computationally faster &

easier, but that does not matter nowadays

-In practice, logit and probit are very similar since empirical results

typically do not hinge on the logit/probit choice, both tend to be used in

practice
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Understanding the Coefficients and the Slopes

In contrast to the linear model, in the probit and logit models the

coefficients do not capture the marginal effect on output when a control

changes

- if control xj is continuous, ∂Pr(y=1)
∂xj

= f (βx)βj

- if control xj is discrete, ∆Pr (y = 1) = F (βx1)−F (βx0)

- Where f (.) and F () are the density and cumulative density functions
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Understanding the Coefficients and the Slopes

- Specifically with z = β0 + β1x1 + . . .+ βkxk

Logit:

- f (z) = e−z

(1+e−z )2

- F (z) = 1
1+e−z

Probit:

- f (z) = φ(z)

- F (z) = Φ(z)
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Estimation and Inference in the Logit and Probit Models

We will focus on the probit model:

Pr(Y = 1|X ) = Φ(β0 + β1X )

we could use nonlinear least squares. However, a more efficient estimator

(smaller variance) is the Maximum Likelihood Estimator
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The Maximum Likelihood Estimator of the Coefficients in
the Probit Model

- The likelihood function is the conditional density of Y1, . . . ,Yn given

X1, . . . ,Xn, treated as a function of the unknown parameters (β ’s)

- The maximum likelihood estimator (MLE) is the value of the β ’s that

maximize the likelihood function.

- The MLE is the value of the β ’s that best describe the full distribution of

the data.

- In large samples, the MLE is:

- consistent

- normally distributed

- efficient (has the smallest variance of all estimators)
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The Maximum Likelihood Estimator of the Coefficients in
the Probit Model

Data: Y1, . . . ,Yn , i.i.d.

Derivation of the likelihood starts with the density of Y1:

Pr(Y1 = 1|X ) = Φ(β0 + β1X1) and Pr(Y1 = 0) = (1−Φ(β0 + β1X1))so

Pr(Y1 = y1|X1) = Φ(β0 + β1X1)y1 ∗ (1−Φ(β0 + β1X1))(1−y1) y1 = 1,0

Pr(Y1 = y1|X1) = Φ(z1)y1 ∗ (1−Φ(z1))(1−y1)

with z1 = β0 + β1X1

21 / 28



The Maximum Likelihood Estimator. Probit

The probit likelihood function is the joint density of Y1, . . . ,Yn given

X1, . . . ,Xn, treated as a function of the β ’s:

f (β ;Y1, . . . ,Yn|X1, . . . ,Xn) = {Φ(z1)y1 ∗ (1−Φ(z1))(1−y1)}{Φ(z2)y2 ∗ (1−Φ(z2))(1−y2)}
. . .{Φ(zn)yn ∗ (1−Φ(zn))(1−yn)}

- β̂MLE maximize this likelihood function.

- But we cannot solve for the maximum explicitly! So the MLE must be

maximized using numerical methods

- In large samples:

- β̂ sMLE , are consistent

- β̂ sMLE , are normally distributed

- β̂ sMLE , are asymptotically efficient among all estimators (assuming the

probit model is the correct model)
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The Maximum Likelihood Estimator. Probit

- Standard errors of β̂ sMLE are computed automatically

- Testing, confidence intervals proceeds as usual

- Everything extends to multiple X ’s
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The Maximum Likelihood Estimator. Logit

- The only difference between probit and logit is the functional form used

for the probability: Φ is replaced by the cumulative logistic function.

Otherwise, the likelihood is similar

- As with probit,

- β̂ sMLE , are consistent

- Their standard errors can be computed

- Testing confidence intervals proceeds as usual
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Measures of Fit for Logit and Probit

- The R2 and R̄2 do not make sense here (why?). So, two other

specialized measures are used:

- The fraction correctly predicted = fraction of Y ′s for which the

predicted probability is > 50% when Yi = 1, or is < 50% when Yi = 0.

- The pseudo-R2 measures the improvement in the value of the log

likelihood, relative to having no X s.
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Basic Commands in gretl for Probit Estimation

probit: computes Maximum Likelihood probit estimation

omit/add: tests joint significance

$yhat: returns probability estimates

$lnl: returns the log-likelihood for the last estimated model

pdf(N,z): returns the density of normal distribution

cdf(N,z): returns the cdf normal distribution

logit: computes Maximum Likelihood logit estimation
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probit depvar indvars−−robust −−verbose
−−p-values

depvar must be binary {0,1} (otherwise a different model is

estimated or an error message is given)

slopes are computed at the means

by default, standard errors are computed using the negative inverse of

the Hessian

output shows χ2
q statistic test for null that all slopes are zero

options:
1 --robust: covariance matrix robust to model misspecification
2 --p-values: shows p-values instead of slope estimates
3 --verbose: shows information from all numerical iterations
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Impact of fertility on female labor participation

Using the data set fertility.gdt :

-estimate a linear probability model that explains wether or not a woman

worked during the last year as a function of the variables morekids,

agem1, black, hispan, and othrace. Give an interpretation of the

parameters. - Using the previous model, what is the impact on the

probability of working when a woman has more than two children?

- Using the same model and assuming that age of the mother is a

continuos variable, what is the impact on the probability of a marginal

change in the education of the mother?

- Answer the previous two question using a probit and logit models.
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