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Binary Dependent Variables: What is Different?

@ So far the dependent variable (Y) has been continuous:

o district-wide average test score
o traffic fatality rate

o What if Y is binary?
e Y = get into college, or not; X = high school grades, SAT scores,

demographic variables
e Y =person smokes, or not; X = cigarette tax rate, income,

demographic variables
e Y = mortgage application is accepted, or not; X = race, income, house

characteristics, marital status

N
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Example: Mortgage Denial and Race The Boston Fed
HMDA Dataset

@ Individual applications for single-family mortgages made in 1990 in

the greater Boston area

@ 2380 observations, collected under Home Mortgage Disclosure Act

(HMDA)
@ Variables

o Dependent variable: Is the mortgage denied or accepted?
e Independent variables: income, wealth, employment status, other loan,
property characteristics, and race of applicant.
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Linear Probability Model

A natural starting point is the linear regression model with a single
regressor:

Yi=Po+PuXi+ i
But:

@ What does 81 mean when Y is binary?

@ What does the line By + B1.X mean when Y is binary?

@ What does the predicted value Y mean when Y is binary? For

example, what does Y =0.26 mean?
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Linear Probability Model

When Y is binary:

E(Y|X)=1xPr(Y =1|X)+0xPr(Y =0|X) = Pr(Y =1|X)

Under the assumption, E(u;|Xi) =0, so

E(Yi|Xi) = E(Bo+ B1Xi + ui| Xi) = Bo+ B1 X,

so,

E(Y[|X) = Pr(Y =1[X) = o+ B X

In the linear probability model, the predicted value of Y is interpreted as
the predicted probability that Y =1, and B; is the change in that
predicted probability for a unit change in X.
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Linear Probability Model

- When Y is binary, the linear regression model
Yi=Bo+B1Xi+ i
is called the linear probability model because
Pr(Y =1|X) = Bo+ B X;
- The predicted value is a probability:
-E(Y|X =x)=Pr(Y =1|X =x) = prob. that Y =1 given X = x
_Y = the predicted probability that Y = 1 given X
-B1 = change in probability that Y =1 for a unit change in x:

Bl _ Pr(Y=1|X=x4+Ax)—Pr(Y=1|X=x)

Ax
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Example: linear probability model, HMDA data

- Mortgage denial v. ratio of debt payments to income (P/I ratio) in a

subset of the HMDA data set (n = 127)
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P/I ratio
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Example: linear probability model, HMDA data

deny; = Bo -+ B Pl; + Bablack;

Model 1: OLS, using observations 1-2380

Dependent variable: deny

Heteroskedasticity-robust standard errors, variant HC1

Coefficient Std. Error t-ratio

const —0.0905136 0.0285996 —3.1649
pi_rat 0.559195 0.0886663 6.3067
black 0.177428 0.0249463 7.1124

p-value

0.0016
0.0000
0.0000

Mean dependent var 0.119748 S.D. dependent var  0.324735

Sum squared resid 231.8047 S.E. of regression
R? 0.076003  Adjusted R?
F(2,2377) 49.38650  P-value(F)
Log-likelihood —605.6108  Akaike criterion

Schwarz criterion 1234546  Hannan—Quinn

0.312282
0.075226
9.67e-22
1217.222
1223.527
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The linear probability model: Summary

-Advantages:
- simple to estimate and to interpret
- inference is the same as for multiple regression (need

heteroskedasticity-robust standard errors)
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The linear probability model: Summary

- Disadvantages:

-A LPM says that the change in the predicted probability for a given
change in X is the same for all values of X, but that doesn't make sense.
Think about the HMDA example?

-Also, LPM predicted probabilities can be < 0 or > 1!

-These disadvantages can be solved by using a nonlinear probability model:

probit and logit regression
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Probit and Logit Regression

- The problem with the linear probability model is that it models the
probability of Y=1 as being linear:
Pr(Y =1]1X) = o+ B X
- Instead, we want:
i. Pr(Y =1|X) to be increasing in X for f; > 0, and
i. 0< Pr(Y=1]|X) <1 for all X
- This requires using a nonlinear functional form for the probability. How

about an " S-curve”?

11/28



S-curve function candidates
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Probit regression

- Probit regression models the probability that Y=1 using the cumulative
standard normal distribution function, ®(z), evaluated at z = o + 1 .X.
The probit regression model is,

Pr(Y =11X) = ®(Bo + B1X)

- where ®(.) is the cumulative normal distribution function and

z=Po+ P1X. is the z—value or z— index of the probit model.

- Example: Suppose fop=—-2, f1 =3, X = .4, so

Pr(Y =1|X = .4) =®(—2+3%.4) = d(-0.8)

Pr(Y =1|X = .4) = area under the standard normal density to left of

z=—.8, which is ...
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Probit regression

L= e @
TABLE 1 The Cumulative Standard Normal Distribution Function, ®{z) = Pr(Z " z)
Area =Pr{Z <),
89 =l
-
0 z
Second Decimal Value of z
z 0 1 2 3 4 5 6 7 8 9
2.9 00019 00018 00018 0.0017 00016 00016 0.0015 00015 00014 0.0014
-2.8 L0076 00024 0.0023 00023 0.0022  0.0021 00021 0.0020  0.0019
(=] 8 e
0.8 0.2061 01977 01949 01922 01894 0.1867
0.7 0.2358 02266 0.2236 02177 0.2148
0.6 02743 02709 0.2676 02611 02578 02540 0.24
0.5 03085 ( b03015 0.2946 02912 02877 0.2776
i ArUIA AR 41177 AT ARG AAL 0EIR A

Pr(z<-0.8) = 2119
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Logit regression

Logit regression models the probability of Y=1, given X, as the cumulative
standard logistic distribution function, evaluated at z = By + B1 X:
Pr(Y =11X) = F(Bo + 1 X)

where F is the cumulative logistic distribution function:

F(ﬁo + le) = 1+e—([]3-0+ﬁ1X)
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Logit regression

- Example: Suppose fop=—-3, f1 =2, X = .4, so
Pr(Y =1|X=.4)= m =0.0998
Why bother with logit if we have probit?

-The main reason is historical: logit is computationally faster &
easier, but that does not matter nowadays

-In practice, logit and probit are very similar since empirical results
typically do not hinge on the logit/probit choice, both tend to be used in

practice
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Understanding the Coefficients and the Slopes

In contrast to the linear model, in the probit and logit models the
coefficients do not capture the marginal effect on output when a control

changes
i - i IPr(y=1) _
- if control x; is continuous, g = f (Bx)B;

- if control x; is discrete, APr(y =1) = F(Bx1) — F (Bxo)

- Where f(.) and F() are the density and cumulative density functions
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Understanding the Coefficients and the Slopes

- Specifically with z = ﬁo + [31X1 +...+ Bka

Logit:
) = ey
- F(z)= 1+£*Z
Probit:
- f(2) = 9(2)

- F(2) = 0(2)
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Estimation and Inference in the Logit and Probit Models

We will focus on the probit model:
Pr(Y =1]X) = ®(Bo + p1X)
we could use nonlinear least squares. However, a more efficient estimator

(smaller variance) is the Maximum Likelihood Estimator
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The Maximum Likelihood Estimator of the Coefficients in
the Probit Model

- The likelihood function is the conditional density of Yi,..., Y, given
Xi,...,Xp, treated as a function of the unknown parameters (B's)
- The maximum likelihood estimator (MLE) is the value of the f's that

maximize the likelihood function.

- The MLE is the value of the B's that best describe the full distribution of
the data.

- In large samples, the MLE is:
- consistent
- normally distributed

- efficient (has the smallest variance of all estimators)
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The Maximum Likelihood Estimator of the Coefficients in
the Probit Model

Data: Y1,...,Y,, iid.

Derivation of the likelihood starts with the density of Yi:

Pr(Y1=1|X)=®(Bo+ P1X1) and Pr(Y1 =0) = (1—P(Bo+ P1X1))so
Pr(Yi=y1|X1) = ®(Bo+ B X )" # (1 = ®(Bo+ B X0)) ) y1=1,0

Pr(Y: = y1|X1) = ®(z1) % (1 — &(z)) )
with 21 = o+ 1. X1
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The Maximum Likelihood Estimator. Probit

The probit likelihood function is the joint density of Yi,...,Y, given
Xi,...,Xn, treated as a function of the f's:

F(Bi Yiseen, Yol X1, o, Xn) = {®(21) % (1 — &(21)) L) H{D(20)72 % (1 — D(20)) (172}
...{d>(z,,)Yn*(17¢(zn))(17yn)}
- EMLE maximize this likelihood function.

- But we cannot solve for the maximum explicitly! So the MLE must be
maximized using numerical methods

- In large samples:

- BsMLE | are consistent
- ﬁsMLE , are normally distributed

~

- BsMLE | are asymptotically efficient among all estimators (assuming the

probit model is the correct model) b e
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The Maximum Likelihood Estimator. Probit

- Standard errors of BsMLE are computed automatically
- Testing, confidence intervals proceeds as usual

- Everything extends to multiple X's
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The Maximum Likelihood Estimator. Logit

- The only difference between probit and logit is the functional form used

for the probability: @ is replaced by the cumulative logistic function.

Otherwise, the likelihood is similar
- As with probit,

- BSMLE , are consistent
- Their standard errors can be computed

- Testing confidence intervals proceeds as usual
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Measures of Fit for Logit and Probit

- The R? and R? do not make sense here (why?). So, two other
specialized measures are used:

- The fraction correctly predicted = fraction of Y’s for which the
predicted probability is > 50% when Y; =1, or is < 50% when Y; =0.
- The pseudo-R? measures the improvement in the value of the log

likelihood, relative to having no Xs.
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Basic Commands in gretl for Probit Estimation

@ probit: computes Maximum Likelihood probit estimation

@ omit/add: tests joint significance

$yhat: returns probability estimates

@ $1nl: returns the log-likelihood for the last estimated model

pdf (N,z): returns the density of normal distribution

cdf (N,z): returns the cdf normal distribution

@ logit: computes Maximum Likelihood logit estimation
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probit depwvar indvars ——robust ——verbose
——p-values

e depvar must be binary {0,1} (otherwise a different model is
estimated or an error message is given)

@ slopes are computed at the means

@ by default, standard errors are computed using the negative inverse of
the Hessian

@ output shows xf, statistic test for null that all slopes are zero

@ options:
@ --robust: covariance matrix robust to model misspecification
© --p-values: shows p-values instead of slope estimates
© -—-verbose: shows information from all numerical iterations
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Impact of fertility on female labor participation

Using the data set fertility.gdt :

-estimate a linear probability model that explains wether or not a woman
worked during the last year as a function of the variables morekids,
ageml, black, hispan, and othrace. Give an interpretation of the
parameters. - Using the previous model, what is the impact on the
probability of working when a woman has more than two children?

- Using the same model and assuming that age of the mother is a
continuos variable, what is the impact on the probability of a marginal
change in the education of the mother?

- Answer the previous two question using a probit and logit models.
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