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Panel Data vs Repeated Cross-sections

In a cross-section each observation can represent an individual, a

family, a firm, a state, a country, etc.

With repeated cross-sections we have more than one period, and

observations in each period correspond to different individuals,

families, firms, etc.

Panel data (or longitudinal data) consists of repeated observations on

the same cross-section: same individuals, families, firms or states are

observed in different periods. In general we consider applications with

many cross section observations but not many periods.
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Example

In order to get a panel to characterize a population of interest it is

necessary to select randomly a set of individuals in a certain period

and collect the information we want. In the next period (month,

quarter, year) we need to find the same individuals and collect the

information again.

In the first class we mentioned some examples. Another one for Spain

is the “Encuesta de Presupuestos Familiares‘” from INE. The new

survey started in January, 2006. The sample size is about 24,000

households per year, and each household is interviewed two

consecutive years.
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Using panel data

Panel data allow us to consider some cases of omitted variables that

in repeated cross-sections would yield inconsistent OLS estimations.

It is the case of omitted variables that differ across units, but are

constant over time.

When using panel data does not seem reasonable to assume that

observations are independent: for instance, unobservable factors that

affect wages in 2014 will affect wages also in 2015.

Then, it is necessary to use special models and methods. We start

with a simple model with two periods.
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Notation

Simple Model with T=2

Yit = β0 + β1Xit + δ0d2t +ai +uit , t = 1,2

Subscript i references the individual, firm, etc.; subscript t indicates

the period of time. In the simple case of two periods we denote t = 1

(for the first period) and t = 2 (for the second one).

d2 is a dummy variable taking the value zero at t = 1, and one at

t = 2. It is the same for all units, then it has no subscript i .

The variable ai captures all unobserved factors affecting Yit that do

not change over time: then it has no subscript t.
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Unobserved Heterogeneity

Yit = β0 + β1Xit + δ0d2t +ai +uit

ai represents unobservable time-invariant individual variation or

heterogeneity (it is called unobserved effect, fixed effect, unobserved

heterogeneity, or individual heterogeneity).

This model is usually called a fixed effects model or unobserved

effects model.

The usual error term is uit , and includes unobserved factors affecting

Yit that change over time.

The term vit = ai +uit is called the composite error: it has a constant

component and a component that changes over time.
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OLS with unobserved heterogeneity

Yit = β0 + β1Xit + δ0d2t + vit

We know that to consistently estimate β1 using OLS, we need to

assume that Xit is not correlated with vit .

Even if we assume that C (Xit ,uit) = 0, OLS estimators will be biased

and inconsistent if C (Xit ,ai ) 6= 0.

The resulting bias for omitting ai in pooled OLS is sometimes called

heterogeneity bias. It is a bias from omitting a time-constant variable.
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Example: Drunk Driving Laws and Traffic Deaths

Goal: analyze policies to reduce the number of drunk drivers.

Data in fatality.gdt in gretl: 48 U.S. states, 7 years (1982,...,1988),

we use only 1982 and 1988: i represents a state, t a year.

Variables:

- Traffic fatality rate: deaths per 10,000 residents (variable TM)

- Tax on a case of beer in 1988 dollars (variable Beertax).
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Example: using a single cross-section

Simple model: MRi = β0 + β1BeerTaxi +ui

The coefficient in 1982 is not statistically significant. Using pooled

cross-sections is positive and significant (see in gretl). Does a tax on

beer increase the number of traffic fatalities?
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Potential explanations

Many factors affecting traffic fatalities:

vintage of autos on the road
quality of roads
culture of drinking and driving
traffic

If some of these factors are correlated with tax on beer...

We could try to get data on these factors, but not all of them are

easy to get.

With panel data we can obtain consistent estimators if the

unobserved factors that may be correlated with tax on beer, are

constant through the period.
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Unobserved heterogeneity in panel data

With panel data we can allow the unobserved effects (ai ) to be

correlated with the controls.

Since ai is the same in the two periods, we can take first differences

and get rid of ai .

Yi2−Yi1 = (β0 + β1Xi2 + δ0 +ai +ui2)− (β0 + β1Xi1 +ai +ui1)

Yi2−Yi1 = δ0 + β1(Xi2−Xi1) + (ui2−ui1)

That it can be written as:

∆Yi = δ0 + β1∆Xi + ∆ui

where ∆ denotes the change from t = 1 to t = 2.
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First-Differenced estimator (FD)

∆Yi = δ0 + β1∆Xi + ∆ui

This equation in first differences is just a single cross-sectional

equation, but each variable is differenced over time.

The intercept represents the change in Y when there is no change in

X .

Key assumption: ∆ui not correlated with ∆Xi . If that is true, OLS

will be consistent.

The OLS estimate for β1 in that equation is called the

First-Differenced estimator (FD).
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About the FD estimator

Allows for arbitrary correlation between ai and the controls.

Under general conditions plim(β̂ ) = β when N → ∞ and T fixed.

There is no estimation of the fixed-effects ai .

All time-invariant controls are dropped when taking first differences.

Then, ∆Xi needs to vary across units. We may have a problem if

∆Xi does not change much. If that is the case, sometimes it makes

sense to take differences between periods far away.
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Mortality example: a panel

Simple model

MRit = β0 + β1BeerTaxit + δ0d1988t +ai +uit , with t = 1982,1988

ai represents invariant and unobservable variables affecting fatality

rate in state i .

It may include local attitudes towards drunk driving (if they change

slowly we can consider them as constant between 1982 and 1988).

For instance, states with a less favorable attitude towards drunk

driving will have on average less traffic fatalities and also probably

higher alcohol taxes.

This would be a case of omitted variable bias: BeerTax captures in

part the effect of the local attitude towards drunk driving.
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Mortality example: first differences

The effect of ai can be eliminated taking first differences.

∆MRi = δ0 + β1∆BeerTaxi + ∆ui

Intuitively:

Attitudes towards drunk driving in a state affects the number of drunk
drivers and therefore the traffic fatality rate in that state.
However, if those attitudes did not change between 1982 and 1988,
they could not have affected the change in the number of traffic
fatalities in the state.
Variation in MR in the period has to be explained by other factors. In
the previous equation these other factor are changes in beer taxes and
changes in ui .
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Mortality example: FD graph

In contrast to the results with pooled cross-sections, using FD we find that an
increase in alcohol taxes reduces traffic fatalities.
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Mortality example: FD results

The intercept allows a change in MR in case of no change in

BeerTax . In this case, the negative estimate could reflect

improvements in cars and roads that reduce the number of fatalities.

An increase in the beer tax of 1$ per case reduces traffic mortality on

average by 1.04 deaths per 10,000 residents.

It is a sizable estimated effect: average fatality rate in the data is 2

deaths per 10,000 people per year. This result suggests that deaths

could be reduced by half with a tax increase of 1$ per case of beer.

17 / 38



Mortality example: some comments

The regression in first differences controls for all invariant and

unobserved factors, for instance local attitudes towards drunk driving.

Note that we need variation in ImpCerv to be able to estimate the

effect of taxes on traffic deaths.

There may be factors affecting traffic security, correlated with alcohol

taxes, that are changing over time. If we omit those variables we may

have a bias when using FD. We do not discuss this problem in this

course.
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First Differences with more periods

It is possible to apply the same strategy with T > 2: we can take

differences from adjacent periods: t− (t−1)

For simplicity assume T = 3:

Yit = δ1 + δ2d2t + δ3d3t + β1Xit +ai +uit , for t = 1,2,3

We are interested in β1. If ai is correlated with Xit , OLS will be

inconsistent.

Key assumption: C (Xit ,uis) = 0 for all t,s: once we eliminate the

effect of ai , Xit is exogenous.

Getting rid of ai

∆Yit = δ2∆d2t + δ3∆d3t + β1∆Xit + ∆uit , with t = 2,3
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First Differences with more periods (cont.)

Key assumption for OLS to be consistent: ∆Xit not correlated wtih

∆uit for t = 2,3.

It can be shown that the previous equation is equivalent to one

including a constant and only one time dummy. Then, in practice we

estimate:

FD with T = 3

∆Yit = α0 + α1d3t + β1∆Xit + ∆uit , for t = 2,3

With T > 3 we do the same: we will have T −1 observations per

unit, and we will include T −2 time dummies.
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Another option when T > 2

There is another method of getting rid of the individual heterogeneity,

that under some assumptions (that we do not discuss here) is better

than FD.

Let’s start with the simple model:

Yit = β0 + β1Xit +ai +uit , t = 1,2, . . . ,T

For each i , we average this equation over time:

Ȳi = β0 + β1X̄i +ai + ūi , where Ȳi = T−1
T

∑
t=1

Yit .

We subtract the second equation from the first one for each t:

Yit − Ȳi = β1(Xit − X̄i ) +uit − ūi , t = 1,2, . . . ,T
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Time-demeaned data

It can be expressed as:

Time-demeaned data
..
Y it = β1

..
X it +

..
uit , t = 1,2, . . . ,T

where
..
Y it = Yit − Ȳi represents deviations from the mean (called

time-demeaned data).

The effect ai has disappeared, then we can estimate the equation by

pooled OLS.

The OLS estimator based on the time-demeaned variables is called

the fixed effects estimator or the within estimator.
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Fixed Effects

In applied economics a traditional view of the fixed effects model is to

assume that the unobserved effect ai is a parameter to be estimated

for each i . Under this view, ai is the intercept for unit i that is to be

estimated along with β1.

The way to do it is to include a dummy variable for each unit i .

Each dummy variable is called a fixed effect. Note that it is not a

fixed parameter, but it is constant for each unit in the period.

It can be shown that this model gives us exactly the same estimates

that the ones obtained with the time-demeaned data. Therefore, the

within estimator can be obtained including unit dummies as well as

time-demeaning the data.
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Fixed Effects or Within estimator characteristics

The fixed effects or within estimator is consistent if uit is uncorrelated

with Xit for all t.

Like the FD estimator, the within estimator allows for any type of

correlation between ai and the controls. Also in this case all invariant

controls are dropped.

In the usual case of large N and small T, the choice between FD or

within estimators is based on the relative efficiency of the estimators

since both will be consistent.

In most cases with more than two periods the within estimator is

more efficient.
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Mortality example: within estimator

..
MR it = β1

..
BeerTax it +

..
uit , with t = 1982,1988

In more detail in the problem set, very briefly here.

First we need to tell gretl that we have panel data, using the unit

and the time variables (setobs state year −−panel−vars).

Then we use the command panel (if we want with the option

−−time-dummies).

We get: β̂1 =−1.04097 with a standard error of 0.3475.

Note that we get the same result if we include state dummies.
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Random Effects (RE )

The FE method uses a transformation of the model to eliminate

unobserved heterogeneity that gives us a consistent estimator without

imposing any additional assumption on ai .

The RE estimator is useful if we assume that unobserved

heterogeneity is not correlated with the controls.

If we include the correct variables in our model, we can think that

unobserved heterogeneity only leads to autocorrelation in the error

term, but not to correlation between the error term and the controls.

If this additional assumption is true, the RE estimator is going to be

consistent, and more efficient than the FE estimator, as it exploits

more information.
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Random Effects Model

A model with unobserved heterogeneity

Yit = β0 + β1Xit1 + β2Xit2 + ...+ βkXitk +ai +uit , t = 1,2, ...,T

Note that the X can include time dummies.

Suppose that ai is not correlated with the X in each period. In this

case, if we transform the model to eliminate ai we will obtain

inefficient estimators.

This model is called a random effects model when we assume that

unobserved heterogeneity ai is not correlated with any of the controls:

Cov(Xitj ,ai ) = 0, t = 1,2, ...,T ; j = 1,2, ...,k
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OLS under Random Effects

Let’s use the simplest model:

Yit = β0 + β1Xit1 +ai +uit , t = 1,2, ...,T

Note that if Cov(Xit1,ai ) = 0⇒ β̂1
OLS

using a single cross-section

will be consistent: no need to use panel data.

But using a single cross-section implies not considering useful

information. So we can use pooled OLS and we will get consistent

estimators.

But, the error term vi ,t = ai +uit , is serially correlated due to ai .

Because under OLS the standard errors are calculated without

considering this autocorrelation, OLS estimators are not

asymptotically efficient.
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The Random Effects Estimator

A method called Feasible Generalized Least Squares (FGLS) gives

asymptotically efficient estimates (we don’t see the details here).

The GLS transformation is the following:

yit −λy i = β0(1−λ ) + β1

(
Xit1−λX i1

)
+ (vit −λv i )

where y i denotes averages over time, and λ lies between zero and one

and depends on the variances of ai and uit , and T :

if uit is large relative to ai , then λ will be close to 0 and RE will be
similar to OLS
if uit is small relative to ai , then λ will be close to 1 and RE will be
similar to FE

GLS is the OLS estimator of the transformed equation

(straightforward in gretl).

29 / 38



Fixed Effects (FE ) vs. Random Effects (RE )

If we are primarily interested in the effect of a time-constant variable

in a panel data study, FE is practically useless.

Without using IV, not an easy task, RE is probably our only choice.

We need to add variables that capture the part of ai correlated with

X , for instance including dummy variables for groups (if we have

many observations within each group). For example, if we have panel

data at the student level, we might include school dummy variables.

Including dummy variables for groups controls for a certain amount of

heterogeneity that might be correlated with the invariant elements of

X .
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A Test for FE vs. RE

If time-invariant unobserved heterogeneity is correlated with the

controls, then FE is consistent while RE is not

If random effects assumptions are true, both FE and RE are

consistent, but RE will be more efficient than FE

We can test whether unobservable heterogeneity is correlated with the

controls using a test proposed by Hausman:

H0 : random effects assumption is true ⇒ insignificant differences
between RE and FE
H1 : random effects assumption is false ⇒ differences between RE and
FE significant
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The Hausman Test

The Hausman test is based on the difference between the FE and the

RE estimators.

A statistically significant difference suggests the null is false, and then

is evidence against the RE assumption.

We don’t derive the test, but we know that under the null, H
a→ χ2

K

where K is the number of regressors

Straightforward to implement it in gretl.
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An Example: Firm Innovation

strong consensus on the role of innovation on economic growth

innovation determinants much less studied: geographical market

range (GMR)

successfully innovative firms are in a position to conquer new markets
for their products
firms with a large presence in distant markets more likely to incur in
innovation costs to keep market shares
unobservable factors: high quality management
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GMR

Consider the unobserved effects model

innovationit = β1jGMRit(j) + β2kDsizeit(k) + β3lDsector(l) +ai +uit

GMR(j): range of GMR: 1: local, 2: national, 3: european, 4:

international

If GMR affects innovation positively, β1j would increase with j

We can use the “Panel de Innovación Tecnológica” (Panel of

Technological Innovation), or PITEC. This unbalanced panel includes

firm level detailed information on innovation from 2003 to 2008.
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Pooled OLS

ols inn const dummify(gmr) dummify(year) dummify(sector) −−robust
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Fixed Effects
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Random Effects
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λ and the Hausman Test

’Within’ variance = 0.0837569 ’Between’ variance = 0.130407

Hausman test - Null hypothesis: GLS estimates are consistent

Asymptotic test statistic: Chi-square(29) = 374.727 with p-value =
9.52973e-62
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