Economía Aplicada Modelos con variables dependiente binarias

Departamento de Economía Universidad Carlos III de Madrid

Ver Stock y Watson (capítulo 11)

Modelos con variables dependiente binarias: ¿Cuál es la diferencia?

- Hasta ahora, la variable dependiente (Y) era continua:
 - calificación promedio en una prueba
 - tasa de mortalidad
 - salarios
- ¿Qué pasa si ahora Y es binaria?
 - Y ser o no aceptado en la universidad; X promedio en secundaria, selectividad, otros controles demográficos
 - Y si una persona fuma o no; X impuestos al tabaco, renta, otros controles demográficos
 - Y si se acepta o no una solicitud para una hipoteca; X raza, renta, características de la vivienda, estado civil

Ejemplo: La denegación de hipotecas y raza del individuo. The Boston Fed HMDA Dataset

- Las solicitudes individuales de hipotecas unifamiliares realizadas en 1990 en el área metropolitana de Boston
- 2380 observaciones, recogidas bajo la Ley de Divulgación de Hipotecas (HMDA)
- Variables
 - Variable dependiente: se deniega o concede la hipoteca
 - Variables independientes: el ingreso, la riqueza, la situación laboral, otro préstamo, características de la propiedad, y raza del solicitante.

Modelo de Probabilidad Lineal (MPL)

Un punto de partida natural es el modelo de regresión lineal con un único regresor:

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

Pero:

- ¿Qué significa β_1 cuando Y es binaria?
- ¿Qué significa la línea $\beta_0 + \beta_1 X$ cuando Y es binaria?
- ¿Qué significa el valor predicho \widehat{Y} cuando Y es binaria? Por ejemplo, ¿qué quiere decir $\widehat{Y} = 0.26$?

Modelo de Probabilidad Lineal (MPL)

Cuando Y es binaria decimos que es una variable aleatoria Bernouilli:

$$E(Y|X) = 1 * Pr(Y = 1|X) + 0 * Pr(Y = 0|X) = Pr(Y = 1|X)$$

Y bajo el supuesto, $E(u_i|X_i) = 0$:

$$E(Y_i|X_i) = E(\beta_0 + \beta_1 X_i + u_i|X_i) = \beta_0 + \beta_1 X_i,$$

Entonces:

$$E(Y|X) = Pr(Y = 1|X) = \beta_0 + \beta_1 X_i$$

En el MPL, el valor predicho de Y se interpreta como la probabilidad predicha de que Y=1 y β_1 , es el cambio en la probabilidad producto de un cambio unitario en X.

Modelo de Probabilidad Lineal (MPL)

- Cuando Y es binaria, el modelo de regresión lineal

$$Y_i = \beta_0 + \beta_1 X_i + \mu_i$$

corresponde a la probabilidad (condicional en X) de que Y=1, la cual es lineal en los parámetros eta_0 y eta_1

$$Pr(Y=1|X) = \beta_0 + \beta_1 X_i$$

- El valor predicho es una probabilidad:

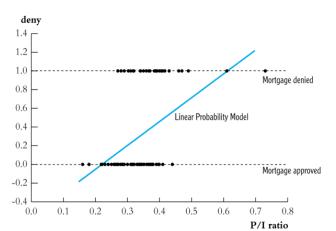
$$-E(Y|X=x) = Pr(Y=1|X=x) = \text{prob. de que } Y=1 \text{ dado } X=x$$

- $-\widehat{Y} =$ la probabilidad predicha de que Y = 1 dado X
- $-eta_1=$ el cambio en la probabilidad de que Y=1 para un cambio en una unidad de x:

$$\beta_1 = \frac{Pr(Y=1|X=x+\Delta x) - Pr(Y=1|X=x)}{\Delta x}$$

Ejemplo: MPL, HMDA data

- Denegación de hipoteca frente a proporción de los pagos asociados a la deuda respecto a los ingresos (ratio o relación P/I), para una sub-muestra de los datos de HMDA (n = 127)



7 / 28

Ejemplo:MPL, HMDA data

$$\widehat{deny_i} = \widehat{\beta_0} + \widehat{\beta_1} PI_i + \widehat{\beta_2} black_i$$

Model 1: OLS, using observations 1–2380
Dependent variable: deny
Heteroskedasticity-robust standard errors, variant HC1

n value

Coefficient

	Coemcient		Sta. Littor		t-ratio	p-v	p-value	
const	-0.0905136		0.0285996		-3.1649	-3.1649 0.00		
pi₋rat	0.559195		0.0886663		6.3067	0.0000		
black	0.177428		0.0249463		7.1124	0.0000		
Mean dependent var		0.11	L9748	S.D.	dependent	var	0.3247	735
Sum squared resid		231.8047		S.E.	S.E. of regression		0.3122	282
R^2		0.07	76003	Adju	sted R^2		0.0752	226
F(2,2377)		49.38650		P-value(F)			9.67e-	-22
Log-likelihood		-605	.6108	Akail	ke criterion		1217.2	222
Schwarz criterion		1234.546		Hanr	Hannan–Quinn		1223.5	527

El MPL: Resumen

- -Ventajas:
 - sencillo de estimar e interpretar
- la inferencia es la misma que la utilizada en el modelo de regresión múltiple
- -Nótese que es necesario utilizar errores estándar robustos porque el MPL es heterocedástico:

$$V(Y|X) = E(Y^2|X) - [E(Y|X)]^2$$
 donde
$$E(Y^2|X) = 1^2 * P(Y=1|X) + 0^2 * P(Y=0|X) = P(Y=1|X)$$
 de manera que

$$V(Y|X) = P(Y = 1|X) - (P(Y = 1|X))^{2}$$
$$V(Y|X) = P(Y = 1|X) * (1 - P(Y = 1|X))$$

El MPL: Resumen

- Desventajas:
- El MPL nos da un cambio en la probabilidad predicha para un determinado valor de X que es igual para todos los valores de X, pero esto no tiene sentido cuando la probabilidad de un evento está acotada. Piensa en el ejemplo anterior (HMDA)
- Del mismo modo, en el MPL las probabilidades predichas pueden ser $<0\ \mbox{o}>1!$
- Estas desventajas pueden ser resueltas por medio de modelos de probabilidad no lineales: probit y logit

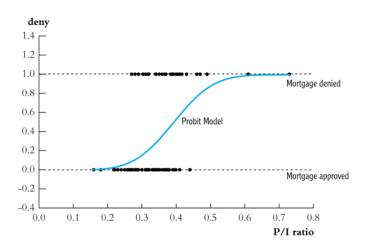
Modelo probit y logit

- El problema con el MPL es que modela la probabilidad de que Y=1 por medio de una función lineal:

$$Pr(Y = 1|X) = \beta_0 + \beta_1 X$$

- sin embargo lo que queremos es que:
 - i. Pr(Y=1|X) sea creciente en X para $\beta_1>0$, y
 - ii. $0 \le Pr(Y = 1|X) \le 1$ para todos los valores de X
- Esto requiere una función de distribución acumulada, que garantiza que para cualquier valor de los parámetros y de X define probabilidades, con valores en el intervalo [0,1].
- Una posibilidad es utilizar una con forma de "S."

Una forma funcional "S"



Modelo Probit

- El modelo Probit modela la probabilidad de Y=1 usando la función de distribución acumulada de una distribución normal estándar: $\Phi(z)$, evaluada en $z=\beta_0+\beta_1 X$.

El modelo Probit puede ser expresado como,

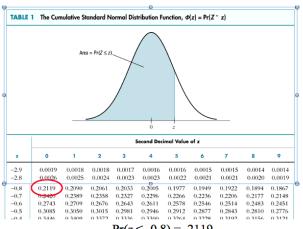
$$Pr(Y = 1|X) = \Phi(\beta_0 + \beta_1 X)$$

- donde $\Phi(.)$ es la función de densidad normal acumulada y $z = \beta_0 + \beta_1 X$ es el z-valor o z- index de un modelo probit.
- Ejemplo: Supongamos $\beta_0 = -2$, $\beta_1 = 3$, X = 0,4, entonces

$$Pr(Y = 1|X = .4) = \Phi(-2 + 3 * 0, 4) = \Phi(-0, 8)$$

$$Pr(Y = 1|X = .4) =$$
 área bajo la función de densidad a la izquierda de $z = -.8$, que es ...

Modelo Probit



 $Pr(z \le -0.8) = .2119$

Modelo Logit

El modelo Logit modela la probabilidad de Y=1 dado X, como la función de distribución acumulada para una función de distribución logistica, evaluada en $z=\beta_0+\beta_1 X$:

$$Pr(Y = 1|X) = F(\beta_0 + \beta_1 X)$$

donde F es la función de distribución acumulada para una logística:

$$F(eta_0 + eta_1 X) = rac{1}{1 + e^{-(eta_0 + eta_1 X)}}$$

Modelo Logit

- Ejemplo: Supongamos $\beta_0 = -2$, $\beta_1 = 3$, X = 0,4, entonces

$$Pr(Y = 1|X = .4) = \frac{1}{1 + e^{-(-3 + 2*0.4)}} = 0.0998$$

¿Por qué preocuparnos del modelo logit si ya tenemos el probit?

- La principal razón es histórica: el modelo logit es computacionalmente menos intensivo pero hoy en día estas ventajas son de menor importancia
- En la practica, los modelos logit y probit son bastante similares y los resultados no dependen de la elección entre uno de ellos.

Interpretación de los coeficientes y pendientes

En contraste con el modelo lineal, en los modelos probit y logit los parámetros no corresponden al efecto marginal sobre la variable dependiente de un cambio en una de las variables de control.

En estos modelos el efecto será:

- en el caso de que x_j sea continua, $\frac{\partial Pr(y=1)}{\partial x_j} = f(\beta x)\beta_j$
- en caso de que x_j sea discreta, $\Delta Pr(y=1) = F(\beta x_1) F(\beta x_0)$
- donde f(.) y F(.) son las funciones de densidad y de distribución acumulada, respectivamente.

Interpretación de los coeficientes y pendientes

- Específicamente con $z=eta_0+eta_1x_1+\ldots+eta_kx_k$

Logit:

$$- f(z) = \frac{e^{-z}}{(1+e^{-z})^2}$$
$$- F(z) = \frac{1}{1+e^{-z}}$$

Probit:

-
$$f(z) = \phi(z)$$

-
$$F(z) = \Phi(z)$$

Estimación e Inferencia en los modelos Logit y Probit

Nos centraremos en el modelo Probit:

$$Pr(Y = 1|X) = \Phi(\beta_0 + \beta_1 X)$$

Podríamos utilizar mínimos cuadrados no lineales. Sin embargo, un estimador más eficiente (menor varianza) es **el estimador de Máxima**Verosimilitud

El estimador de Máxima Verosimilitud de los coeficientes en el modelo probit

- La función de máxima verosimilitud es la densidad condicional de Y_1, \ldots, Y_n dado X_1, \ldots, X_n , como función de los parametros desconocidos $(\beta$'s)
- El estimador de máxima verosimilitud es (EMV) es el valor de β 's que maximiza la función de máxima verosimilitud.
- El EMV es el valor de eta's que mejor describe la distribución de los datos.
- En muestras grandes, el EMV es:
 - consistente
 - normalmente distribuido
 - eficiente (tiene la menor varianza entre todos los estimadores)

El estimador de Máxima Verosimilitud de los coeficientes en el modelo probit

Datos: Y_1, \ldots, Y_n , i.i.d.

La derivación de la verosimilitud parte por definir la densidad de Y_1 :

$$Pr(Y_1 = 1|X) = \Phi(\beta_0 + \beta_1 X_1)$$
 y $Pr(Y_1 = 0) = (1 - \Phi(\beta_0 + \beta_1 X_1))$, entonces

$$Pr(Y_1 = y_1 | X_1) = \Phi(\beta_0 + \beta_1 X_1)^{y_1} * (1 - \Phi(\beta_0 + \beta_1 X_1))^{(1 - y_1)} \qquad y_1 = 1, 0$$

$$Pr(Y_1 = y_1 | X_1) = \Phi(\beta_0 + \beta_1 X_1)^{y_1} * (1 - \Phi(\beta_0 + \beta_1 X_1))^{(1-y_1)}$$
 $y_1 = 1, 0$

$$Pr(Y_1 = y_1 | X_1) = \Phi(z_1)^{y_1} * (1 - \Phi(z_1))^{(1-y_1)}$$

con $z_1 = \beta_0 + \beta_1 X_1$

El estimador de Máxima Verosimilitud. Probit

Función de verosimilitud para un modelo probit, la densidad conjunta de Y_1, \ldots, Y_n dado X_1, \ldots, X_n , como función de los β :

$$f(\beta; Y_1, ..., Y_n | X_1, ..., X_n) = \{\Phi(z_1)^{y_1} * (1 - \Phi(z_1))^{(1-y_1)}\} \{\Phi(z_2)^{y_2} * (1 - \Phi(z_2))^{(1-y_2)}\}$$

$$... \{\Phi(z_n)^{y_n} * (1 - \Phi(z_n))^{(1-y_n)}\}$$

- $\widehat{\beta}^{EMV}$ maximiza la función de verosimilitud.
- pero este valor no tiene expresión explícita! Entonces el EMV debe ser resuelto por métodos numéricos
- En muestras grandes:
- $\widehat{\beta}s^{EMV}$, son consistentes
- $\widehat{\beta}s^{EMV}$, están normalmente distribuidos
- $-\widehat{\beta}s^{EMV}$, son asintóticamente eficientes entre todos los estimadores (bajo el supuesto de que el modelo probit es el correcto)

El estimador de Máxima Verosimilitud. Probit

- Los errores estándar def $\widehat{eta}s^{EMV}$ son calculados automáticamente
- Para contrastes e intervalos de confianza se procede de la forma usual
- Todo se hace extensivo para múltiples X's

El estimador de Máxima Verosimilitud. Logit

- La única diferencia entre los modelos probit y logit es la forma funcional para la probabilidad: Φ es remplazada por la función acumulada para una función logística. Salvo por esto, la verosimilitud es igual
- Al igual que en el modelo probit,
 - $\widehat{\beta}s^{EMV}$ son consistentes
 - Sus errores estándar pueden ser calculados
 - Contrastes e intervalos de confianza se procede de la forma usual

Medidas de bondad del ajuste para los modelos Logit y Probit

- El R^2 y el \bar{R}^2 no tienen sentido. Otras dos medidas son generalmente utilizadas:
- La porcentaje (o proporción) de predicciones correctas = fracción de Y's para los cuales la probabilidad predicha es > 50% cuando $Y_i = 1$, o es < 50% cuando $Y_i = 0$. Donde la elección del umbral de 50% es arbitraria.
- El **pseudo**- R^2 : mide el grado de mejora en el ajuste del modelo del log de la verosimilitud respecto al modelo sin Xs.

Comandos básicos en gretl para la estimación de modelos probit y logit

- probit: estimación por máxima verosimilitud de un modelo probit
- omit/add: contraste de significación conjunta
- \$yhat: probabilidad predicha
- \$1n1: log de la verosimilitud del modelo estimado
- pdf(N,z): entrega la densidad para una distribución normal estándar
- cdf(N,z): entrega la distribución acumulada para una distribución normal estándar
- logit: estimación por máxima verosimilitud de un modelo logit

probit depvar indvars -- robust -- verbose --p-values

- depvar debe ser una variable binaria {0,1} (en caso contrario, otro modelo debe ser estimado o recibiremos un mensaje de error)
- las pendientes son evaluadas en las medias de las variables
- por defecto, los errores son calculados usando el inverso del Hessiano
- la salida reporta el estadístico χ_q^2 para el contraste conjunto de todas las pendientes iguales a cero
- options:
 - Image: un matriz de covarianzas robustas
 - 2 --p-values: reporta el p-valor en vez de las estimaciones de las pendientes.
 - 3 --verbose: muestra información acerca de las iteraciones numéricas

Impacto de la fertilidad sobre la participación laboral femenina

Usando los datos contenidos en el archivo fertility.gdt :

- estime un MPL que explique si una mujer ha trabajado o no durante el último año como función de las variables morekids, agem1, black, hispan, y othrace. Interprete los parámetros.
- Utilizando el modelo anterior, ¿Cuál es el impacto sobre la probabilidad de trabajar asociado a que una mujer tenga más de dos hijos?
- Utilizando el modelo anterior y asumiendo que la edad de la madre es una variable continua, ¿Cuál es el impacto sobre la probabilidad de trabajar asociado a un cambio marginal en la educación de la madre?
- Responda las preguntas anteriores utilizando un modelo probit y logit.