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Reputation Effects or Equilibrium Robustness

Reputation Effects:

Kreps, Wilson and Milgrom and Roberts: A small amount of
uncertainty has a big effect on the set of equilibrium payoffs.

This has come to be called a reputation effect.

Usually this considers one long run player playing a sequence
of short run players. (Sometimes these are very short run as in
continuous time models Faingold and Sannikov 2007.)
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Reputation Effects or Equilibrium Robustness

Equilibrium Robustness:

Folk Theorem ⇒ a repeated game has many equilibrium
payoffs as δ → 1.

Does introducing a small amount of uncertainty shrink this set
significantly and sharpen predictive power?

This is a continuity question: Can you find payoffs of limiting
equilibria (as δ → 1) in games with incomplete information
that are close to any folk-theorem payoff?

This is equivalent to thinking about the value of a reputation
when playing against a long run opponent.
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Weak Reputations Under Perfect Monitoring

Cripps and Thomas (1997,2003): When players are able to monitor
each others actions perfectly and have equal discount factors, then
adding a small amount of incomplete information will not change
the set of equilibrium payoffs dramatically...

Take a repeated strategic form game.

Introduce uncertainty about the type of one of the players.

Consider the set of equilibrium payoffs as δ → 1.

Show that you can find equilibria in this set that give the
informed player payoffs arbitrarily close to their minmax
payoff.

Note: This approach is known to work in all but 3 special
cases mentioned below. These conclusions were substantially
generalized in Peski (2007).
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Figure 1
Payoffs

Amount of UncertaintyComplete 
Information

Set of Equilibrium Payoffs as δ→1
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Our Example

Consider the game:

[
(1, 1) (0, 0)
(0, 0) (0, 0)

]

In this game there are no reputation effects under perfect
monitoring but full reputation effects with an arbitrary small
amount of imperfect monitoring.
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Notation

Let δ < 1 denote the discount factor for both players.

There is uncertainty about the type of the row player.

At time t = −1 the “type” of the row player is selected.

With probability µ row is a commitment type.

The commitment type always plays the top row.

With probability 1− µ row is a normal type.

The normal type has payoffs as in the above matrix.
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Strategies and Beliefs

µt denotes the column player’s posterior at the start of time t
that row is the commitment type.

(pt , 1− pt) is the row player’s time t behavior strategy.

πt is the probability the uninformed player attaches to the
commitment action being played at time t.(

πt

1− πt

)
≡ µt

(
1
0

)
+ (1− µt)

(
pt

1− pt

)
and

µt+1 =
µt

πt
, or µt+1 = 0
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How to build bad equilibria:

[
(1, 1) (0, 0)
(0, 0) (0, 0)

]

We will now construct an equilibrium where: the column player
plays Right for N periods and then (1, 1) is played forever.
The players get the payoffs

(1− δN)0 + δN1 = δN

where δN → 0 as δ → 1 and µ→ 0.
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Bad Equilibria

(1,1) (0,0)

(0,0) (0,0)

Events in the first period of Play
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Bad Equilibria

(1,1) (0,0)

(0,0) (0,0)

Column player plays 
Right

Events in the first period of Play
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Bad Equilibria

(1,1) (0,0)

(0,0) (0,0)

Column player plays 
Right

Row

Randomizes

Events in the first period of Play: Then what?
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Bad Equilibria

(1,1) (0,0)

(0,0) (0,0)

Column player plays 
Right

Row

Randomizes

IF REPUTATION IS PRESERVED PLAY 
EQUILIBRIUM WITH N-1 PERIODS OF RIGHT

After these two 
outcomes will 
get δN-1
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Bad Equilibria

(1,1) (0,0)

(0,0) (0,0)

Column player plays 
Right

Row

Randomizes

IF REPUTATION BROKEN THROUGH A CHOICE 
RANDOMIZATION TELLS US WHAT THE ROW 
PLAYER WILL GET

Will get δN-1

Will also get δN-1
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Bad Equilibria

(1,1) (0,0)

(0,0) (0,0)

What do we put if Bottom Left is played?

(δN,δN-1 ) (δN-1,δN-1 )

(?,?) (δN-1,δN-1 )

1st period Afterwards
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Bad Equilibria

(1,1) (0,0)

(0,0) (0,0)

What do we put if Bottom Left is played?

Make this as Low as possible to punish column 
player for playing right.

(δN,δN-1 ) (δN-1,δN-1 )

(0,0) (δN-1,δN-1 )

1st period Afterwards
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The incentive to play Right

When plays right gets (1− δ)0 + δ(δN−1).

If play left and up is played will get 1 today and δN−1

tomorrow.
(1− δ) + δN

If play left and down is played will get 0 today and 0
tomorrow.

Right is optimal iff

δN ≥ π
(

(1− δ) + δN
)

+ (1− π)0

Equivalently

1− π ≥ 1− δ
1− δ + δN

Summary: This is a potential equilibrium as long as the probability
the row player plays down, 1− π, isn’t too small.
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The incentive to play Right for N periods

We have 3 conditions that need to be satisfied

πt = µt + (1− µt)pt is the probability that the row player
plays top.

µt+1 = µt/πt Bayesian updating.

(1− µt)(1− pt) = 1− πt ≥ 1−δ
1−δ+δN−t gives incentive to play

right

Solving iteratively give

µ0 ≤
N∏

n=1

δn

1− δ + δn
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The set of equilibria

Payoffs

Priorsµ=0 µ=1

1

δ

δ2

δ3

δ4 Π δn/(1−δ+δn) 
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Behavior as δ → 1.

Taking logarithms

logµ0 ≤
N∑

n=1

log
δn

1− δ + δn

Now use log x ≥ 1− (1/x) to get the sufficient condition

logµ0 ≤
N∑

n=1

δ − 1

δn
= 1− δ−N

This implies we can choose

δN =
1

1− logµ

Which tends to zero as µ→ 0.
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Why do we fail to get reputation effects?

Key feature is that the uninformed player does not want to
play a best response to the reputation.

He is punished if he plays right and the row player plays down.

The punishment cannot occur too frequently because
otherwise there is a big loss of reputation. So the punishment
is is a vanishingly (as δ → 1) chance of a big (He gets (0, 0))
loss.
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In 3 Known Cases this Breaks down:

Chan: The commitment action is strictly dominant in the
stage game — in this case can never provide incenties for the
row player to randomize.

Cripps, Dekel, Pesendorfer: Games of conflicting interests —
in this case playing a best response to the reputation action
minmaxes the uninformed player and nothing worse than this
can be done to him!

Atakan and Ekmekci: Repeated Extensive form games — The
punishment has to occur after the deviation has occurred and
therefore cannot be too bad.
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Imperfect Public Monitoring

We deal with the simplest possible case: The column player’s
action is perfectly observable.

The row player’s action is imperfectly monitored.

With probability 1− ε the column player sees the true action.

With probability ε the column player sees the reverse action.

Payoffs are unobservable.
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Notation Strategies and Beliefs

µt denotes the column player’s posterior at the start of time t
that row is the commitment type.

(pt , 1− pt) is the row player’s time t behavior strategy.

πt is the probability the uninformed player attaches to the
commitment action being played at time t.

π̃t = ε+ (1− 2ε)πt is the probability with which the
uninformed player observes a signal that says the commitment
action was played at time t.

Bayes’ Theorem

µt+1 =
µt(1− ε)

π̃t
≡ µ′ or µt+1 =

µtε

1− π̃t
≡ µ′′
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Intuition for the result

Recall our earlier construction..

Playing optimally against the reputation type is punished.

Punishment = a very small probability of a very large loss.

A large loss is possible because when the row player plays
down they reveal their type and play an equilibrium of the
complete information game.

The very small probability is necessary because this has to
occur in many periods.
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Intuition for the result

Under Imperfect Monitoring playing down with very small
probability does not reveal your type!

It results in an arbitrarily small revision of beliefs and
consequently arbitrarily small punishment.

The noise in the signals means very small actions by the row
player are very hard for the column player to detect.

Bayes’ Theorem after down

µt+1 =
µtε

1− π̃t
=

µtε

1− ε− (1− 2ε)πt
→ µt

AS πt → 1.
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The Result

Let bδ(µ) be the worst public equilibrium payoff to the column/row
player in the game with prior µ and discount factor δ < 1.

Proposition

For any µ > 0 we have that limδ→1 bδ(µ) = 1.
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Strategy of Proof

Step 1 Find a set that includes the equilibrium payoff correspondence.

Step 2 Show that this set can be described as the unique fixed point
of a simple operator.

Step 3 Show that this fixed point converges to 1 as δ → 1.
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The Equilibrium Correspondence 1
For any δ the set of public equilibrium payoffs is a closed graph
correspondence (set-valued map) from µ ∈ [0, 1] to equilibrium
payoffs in [0, 1].

Payoffs

Equilibrium Payoffs for given δ

Closed but not 
ConvexConvex

µ=1µ=0

Imposing the restriction that the players get the same equilibrium
payoffs!
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The Equilibrium Correspondence 2

Eδ : [0, 1] ⇒ [0, 1] is closed but not necessarily convex, take its
convex hull.

C0Eδ(µ)

This may allow us to provide incentives for the players to do more
so let’s write down the set of payoffs that can be enforced using
C0Eδ(µ) as continuations. Take the convex hull of this.

C1Eδ(µ)

Iterate calculating CnEδ(µ) in the same way.
This is an increasing sequence of closed sets so let

E∗δ (µ) ≡ ∪∞n=0CnEδ(µ) ⊇ Eδ(µ)
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Characterizing the Correspondence E∗δ (µ)
Let b∗δ (µ) be the minimum value of this correspondence.

Payoffs

1

E*(µ)
Convex

b*(µ)

µ=1µ=0



Introduction Perfect Monitoring Imperfect Monitoring

Properties of E∗δ (µ): 1

Column: Can always play Left and get

(1− δ)π + δ
(
π̃b∗δ (µ′) + (1− π̃)b∗δ (µ′′)

)
This is true at the worst payoff so there exists π̃, µ′,
µ′′ such that

b∗δ (µ) ≥ (1− δ)π + δ
(
π̃b∗δ (µ′) + (1− π̃)b∗δ (µ′′)

)
Row: At a worst equilibrium must randomize and be

indifferent btwn Top and Bottom. The continuations
to playing bottom cannot be less than those from
playing top. (As top payoffs better than the bottom.)
This implies

b∗δ (µ) ≥ δBottom Cont ≥ δTop Cont ≥ δb∗δ (µ′)
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Properties of E∗δ (µ): 2

Combining these

b∗δ (µ) ≥ min
µ′µ′′

max

{
(1− δ)π + δ (π̃b∗δ (µ′) + (1− π̃)b∗δ (µ′′))

δb∗δ (µ′)

}
Here the minimum is taken over all pairs µ′, µ′′ that are consistent
with some value of π̃ ∈ [ε, 1− ε].
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Properties of E∗δ (µ): 4

Define the operator

Tδ ◦ f (µ) ≡ min
µ′µ′′

max

{
(1− δ)π + δ (π̃f (µ′) + (1− π̃)f (µ′′))

δf (µ′)

}
We have that b∗δ (µ) satisfies.

b∗δ (.) ≥ Tδ ◦ b∗δ (.)



Introduction Perfect Monitoring Imperfect Monitoring

Properties of E∗δ (µ): 5

We can study the properties of Tδ and its fixed points:

Uniqueness: Tδ is a contraction by Blackwell’s Theorem so it has
a unique fixed point for all δ < 1.

Increasing: Tδ maps increasing functions to increasing functions
so the fixed point is increasing.

Continuous and Increasing: Tδ maps continuous increasing
functions to continuous increasing functions so the
fixed point is continuous increasing.

f (µ) ≥ µ: Iterating Tδ we can deduce that f ∗δ (µ) ≥ µ for any
fixed point.

Equality: If f ∗δ is cont. and increasing then the solution to the
min max problem has a simple outcome...
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Properties of E∗δ (µ): 5 1/2

Given the above we can conclude that if f ∗δ is the unique fixed
point of Tδ then f ∗δ ≤ b∗δ :

Step 1: By definition Tδb∗δ ≤ b∗δ .

Step 2: Tδ is an increasing map f ≤ g ⇒ Tδf ≤ Tδg .

Step 3: The sequence (Tδ)n ◦ b∗δ is decreasing and converges
to f ∗δ .
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Properties of E∗δ (µ): 6

There is a unique increasing, continuous solution to the operator
equation satisfying:

f ∗δ (µ) = (1− δ)π + δ
(
π̃f ∗δ (µ′) + (1− π̃)f ∗δ (µ′′)

)
f ∗δ (µ) = δf ∗δ (µ′)
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Letting δ → 1: 1

+ Consider a sequence of δ → 1

+ This generates a sequence of increasing continuous functions
f ∗δ : [0, 1]→ [0, 1].

+ This has a convergent subsequence (Helly).

+ Let us study the properties of this convergent subsequence.
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Letting δ → 1: 2

The limit is continuous on the interior of [0, 1]. Along this
subsequence:

δf ∗δ (µ′) = (1− δ)π + δ
(
π̃f ∗δ (µ′) + (1− π̃)f ∗δ (µ′′)

)
This implies

(1− δ)π/δ = (1− π̃)(f ∗δ (µ′)− f ∗δ (µ′′)) ≥ 0

But π̃ ≤ 1− ε, so as δ → 1 we have

f ∗δ (µ′)− f ∗δ (µ′′)→ 0

when µ′ ≥ µ ≥ µ′′. So the limiting function must be continuous
for interior µ.
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Letting δ → 1: 3

Along this subsequence:

f ∗δ (µ) = (1− δ)π + δ
(
π̃f ∗δ (µ′) + (1− π̃)f ∗δ (µ′′)

)
0 =

1− δ
µδ(1− ε− π̃)

(π − f ∗δ (µ)) + ∆+
µ −∆−µ

Where the incentives are given by slopes:

∆+
µ ≡

f ∗δ (µ′)− f ∗δ (µ)

µ′ − µ

∆−µ ≡
f ∗δ (µ)− f ∗δ (µ′′)

µ− µ′
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Letting δ → 1: 4

Along this subsequence:

f ∗δ (µ) = δf ∗δ (µ′)

(1− δ)f ∗δ (µ)

δ(µ′ − µ)
= ∆+

µ

Combining this with what came before:

0 = ∆+
µ

(
1 +

π − b∗δ (µ)

π̃

)
−∆−µ
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Letting δ → 1: 5

The limit of b∗δ (.) is increasing ⇒ it is differentiable almost
everywhere.
We now show that it is constant on the interior of [0, 1].
At a point of differentiability the up-slope and the down-slope
converge to the same thing:

0 = ∆+
µ

(
1 +

π − b∗δ (µ)

π̃

)
−∆−µ

Becomes

0 = Db∗1

(
π − b∗1(µ)

π̃

)
Almost everywhere the continuous limit is constant (Db∗1 = 0) or
π = b∗1(µ). If π < 1 this implies µ′ >> µ′′ and that the slope is
constant here too.
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And Finally

The limit b∗1(µ) is constant on the interior of [0, 1]. The limiting
function also satisfies b∗δ (µ) ≥ µ.

The limit is

b∗1(µ) =

{
1, µ > 0;
0, µ = 0.

This is the limit of all convergent subsequences.�
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