MATEMÁTICAS AVANZADAS PARA LA ECONOMÍA Problem Sheet 1

Diagonalization

1-1. Given the matrix

$$
A=\left(\begin{array}{ll}
2 & 4 \\
3 & 1
\end{array}\right)
$$

compute its eigenvalues, eigenvectors and diagonalize A.
1-2. Given the following matrices

$$
A=\left(\begin{array}{rrr}
4 & 6 & 0 \\
-3 & -5 & 0 \\
-3 & -6 & 1
\end{array}\right) \quad B=\left(\begin{array}{rrr}
1 & 0 & -2 \\
0 & 0 & 0 \\
-2 & 0 & 4
\end{array}\right) \quad C=\left(\begin{array}{rrr}
4 & 5 & -2 \\
-2 & -2 & 1 \\
-1 & -1 & 1
\end{array}\right)
$$

(a) Compute its eigenvalues, eigenvectors and the eigenspaces.
(b) Diagonalize them, whenever possible.
$1-3$. What are the values of a for which the matrix

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
1 & 1 & 2
\end{array}\right)
$$

is diagonalizable?
1-4. Show that
(a) If A is a diagonalizable matrix, so is A^{n} for each $n \in \mathbb{N}$.
(b) A diagonalizable matrix A is regular if and only if none of its eigenvalues vanishes.
(c) If A has an inverse, then both A and A^{-1} have the same eigenvectors and the eigenvalues of A are the reciprocal of the eigenvalues of A^{-1}.
(d) A and A^{t} have the same eigenvalues.

1-5. Study for which values of a and b the matrix $A=\left(\begin{array}{lll}5 & 0 & 0 \\ 0 & -1 & a \\ 3 & 0 & b\end{array}\right)$ is diagonalizable.
1-6. Which of the following matrices are diagonalizable?

$$
A=\left(\begin{array}{rrr}
1 & 2 & 0 \\
-1 & 3 & 1 \\
0 & 1 & 1
\end{array}\right) \quad B=\left(\begin{array}{rr}
-2 & 1 \\
1 & 0
\end{array}\right) \quad C\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

1-7. The matrix $\left(\begin{array}{ccc}1 & 0 & 0 \\ \alpha+1 & 2 & 0 \\ 0 & \alpha+1 & 1\end{array}\right)$ is diagonalizable if and only α is...
1-8. Consider the matrices

$$
A=\left(\begin{array}{ccc}
3 & 2 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad B=\left(\begin{array}{ccc}
2 & 0 & 0 \\
1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right) \quad C=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

Find whether they are diagonalizable and, whenever they are, compute their n-th power.
1-9. The following are the characteristic polynomials of some square matrices. Determine which of them correspond to diagonalizable matrices.

$$
\begin{array}{ll}
p(\lambda)=\lambda^{2}+1 & p(\lambda)=\lambda^{2}-1 \\
p(\lambda)=\lambda^{2}+\alpha & p(\lambda)=\lambda^{2}+2 \alpha \lambda+1 \\
p(\lambda)=\lambda^{2}+2 \lambda+1 & p(\lambda)=(\lambda-1)^{3} \\
p(\lambda)=\lambda^{3}-1 &
\end{array}
$$

1-10. Determine whether the following matrices are diagonalizable. Compute the n-th power whenever they are diagonalizable.

$$
A=\left(\begin{array}{cc}
\alpha & 0 \\
1 & \alpha
\end{array}\right) \quad B=\left(\begin{array}{cc}
\alpha & 1 \\
1 & \alpha
\end{array}\right) \quad C=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

1-11. Study for what values of the parameters the following matrices are diagonalizable. Find the eigenvalues and eigenvectors.

$$
A=\left(\begin{array}{ccc}
a & b & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad B=\left(\begin{array}{ccc}
1 & -2 & -2-\alpha \\
0 & 1 & \alpha \\
0 & 0 & 1
\end{array}\right)
$$

1-12. The matrix

$$
\left(\begin{array}{ccc}
a & 1 & p \\
b & 2 & q \\
c & -1 & r
\end{array}\right)
$$

has $(1,1,0),(-1,0,2)$ and $(0,1,-1)$ as eigenvectors. Compute its eigenvalues.
1-13. Determine whether the following matrices are diagonalizable. If possible, write their diagonal form.

$$
\begin{array}{ccc}
A=\left(\begin{array}{ccc}
5 & 4 & 3 \\
-1 & 0 & -3 \\
1 & -2 & 1
\end{array}\right) & B=\left(\begin{array}{ccc}
-2 & -1 & -1 \\
1 & 0 & 1 \\
0 & 0 & -1
\end{array}\right) \quad C=\left(\begin{array}{ccc}
5 & 7 & 5 \\
-6 & -5 & -3 \\
4 & 1 & 0
\end{array}\right) \\
D=\left(\begin{array}{ccc}
3 & 2 & 0 \\
-1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right) & E=\left(\begin{array}{ccc}
-1 & 2 & -2 \\
0 & 2 & 0 \\
0 & 3 & -2
\end{array}\right) \quad F=\left(\begin{array}{ccc}
5 & -10 & 8 \\
-10 & 2 & 2 \\
8 & 2 & 11
\end{array}\right) \\
G=\left(\begin{array}{lll}
1 & -1 & 2 \\
0 & 3 & 2 \\
0 & 1 & 4
\end{array}\right) & H=\left(\begin{array}{ccc}
2 & 0 & 3 \\
0 & 1 & 0 \\
-1 & 0 & -2
\end{array}\right) & I=\left(\begin{array}{ccc}
3 & -1 & 0 \\
-1 & 3 & 0 \\
0 & 0 & 2
\end{array}\right) \\
J=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 0 \\
1 & 0 & 2
\end{array}\right) & K=\left(\begin{array}{ccc}
-1 & 2 & -2 \\
0 & 2 & 0 \\
0 & 3 & -2
\end{array}\right) & L=\left(\begin{array}{ccc}
-9 & 1 & 1 \\
-18 & 0 & 3 \\
-21 & 4 & 0
\end{array}\right)
\end{array}
$$

