
Topic 2: Difference Equations

1. Introduction

In this chapter we shall consider systems of equations where each variable has a time index t =
0, 1, 2, . . . and variables of different time–periods are connected in a non–trivial way. Such systems
are called systems of difference equations and are useful to describe dynamical systems with discrete
time. The study of dynamics in economics is important because it allows to drop out the (static)
assumption that the process of economic adjustment inevitable leads to an equilibrium. In a dynamic
context, this stability property has to be checked, rather than assumed away.
Let time be a discrete denoted t = 0, 1, . . .. A function X : N −→ Rn that depends on this variable
is simply a sequence of vectors of n dimensions

X0, X1, X2, . . .

If each vector is connected with the previous vector by means of a mapping f : Rn −→ Rn as

Xt+1 = f(Xt), t = 0, 1, . . . ,

then we have a system of first–order difference equations. In the following definition, we generalize
the concept to systems with longer time lags and that can include t explicitly.

Definition 1.1. A kth order discrete system of difference equations is an expression of the form

(1.1) Xt+k = f(Xt+k−1, . . . , Xt, t), t = 0, 1, . . . ,

where every Xt ∈ Rn and f : Rn × Rn × [0,∞) −→ Rn. The system is

• autonomous, if f does not depend on t;
• linear, if the mapping f is linear in the variables (Xt+k−1, . . . , Xt);
• of first order, if k = 1.

Definition 1.2. A sequence {X0, X1, X2, . . .} obtained from the recursion (1.1) with initial value X0

is called a trajectory, orbit or path of the dynamical system from X0.

In what follows we will write xt instead of Xt if the variable Xt is a scalar.

Example 1.3. [Geometrical sequence] Let {xt} be a scalar sequence, xt+1 = qxt, t = 0, 1, . . ., with
q ∈ R. This a first–order, autonomous and linear difference equation. Obviously xt = qtx0. Similarly,
for arithmetic sequence, xt+1 = xt + d, with d ∈ R, xt = x0 + td.

Example 1.4.

• xt+1 = xt + t is linear, non–autonomous and of first order;
• xt+2 = −xt is linear, autonomous and of second order;
• xt+1 = x2

t + 1 is non–linear, autonomous and of first order;

Example 1.5. [Fibonacci numbers (1202)] “How many pairs of rabbits will be produced in a year,
beginning with a single pair, if every month each pair bears a new pair which becomes productive
from the second month on?”. With xt denoting the pairs of rabbits in month t, the problem leads
to the following recursion

xt+2 = xt+1 + xt, t = 0, 1, 2, . . . , with x0 = 1 and x1 = 1.

This is an autonomous and linear second–order difference equation.
1
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2. Systems of first order difference equations

Systems of order k > 1 can be reduced to first order systems by augmenting the number of variables.
This is the reason we study mainly first order systems. Instead of giving a general formula for the
reduction, we present a simple example.

Example 2.1. Consider the second–order difference equation yt+2 = g(yt+1, yt). Let x1,t = yt+1,
x2,t = yt, then x2,t+1 = yt+1 = x1,t and the resulting first order system is(

x1,t+1

x2,t+1

)
=

(
g(x1,t, x2,t)

x1,t

)
.

If we denote Xt =

(
x1,t

x2,t

)
, f(Xt) =

(
g(Xt)
x1,t

)
, then the system can be written Xt+1 = f(Xt).

For example, yt+2 = 4yt+1 + y2
t + 1 can be reduced to the first order system(

x1,t+1

x2,t+1

)
=

(
4x1,t + x2

2,t + 1
x1,t

)
,

and the Fibonacci equation of Example 1.5 is reduced to(
x1,t+1

x2,t+1

)
=

(
x1,t + x2,t

x1,t

)
,

For a function f : Rn −→ Rn, we shall use the following notation: f t denotes the t–fold composition
of f , i.e. f 1 = f , f 2 = f ◦ f and, in general, f t = f ◦ f t−1 for t = 1, 2, . . .. We also define f 0 as the
identity function, f 0(X) = X.

Theorem 2.2. Consider the autonomous first order system Xt+1 = f(Xt) and suppose that there
exists some subset D such that for any X ∈ D, f(X, t) ⊆ D. Then, given any initial condition
X0 ∈ D, the sequence {Xt} is given by

Xt = f t(X0).

Proof. Notice that

X1 = f(X0),

X2 = f(X1) = f(f(X0)) = f 2(X0),

...

Xt = f(f · · · f(X0) · · · )) = f t(X0).

�

The theorem provides the current value of X, Xt, in terms of the initial value, X0. We are interested
what is the behavior of Xt in the future, that is, in the limit

lim
t→∞

f t(X0).

Generally, we are more interested in this limit that in the analytical expression of Xt. Nevertheless,
there are some cases where the solution can be found explicitly, so we can study the above limit
behavior quite well. Observe that if the limit exists, limt→∞ f

t(X0) = X0, say, and f is continuous

f(X0) = f( lim
t→∞

f t(X0)) = lim
t→∞

f t+1(X0) = X0,

hence the limit X0 is a fixed point of map f . This is the reason fixed points play a distinguished role
in dynamical systems.
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Definition 2.3. A point X0 ∈ D is called a fixed point of the autonomous system f if, starting the
system from X0, it stays there:

If X0 = X0, then Xt = X0, t = 1, 2, . . . .

Obviously, X0 is also a fixed point of map f . A fixed point is also called equilibrium, stationary
point, or steady state.

Example 2.4. In Example 1.3 (xt+1 = qxt), if q = 1, then every point is a fixed point; if q 6= 1, then
there exists a unique fixed point: x0 = 0. Notice that the solution xt = qtx0 has the following limit
(x0 6= 0) depending the value of q.

−1 < q < 1⇒ lim
t→∞

qtx0 = 0,

q = 1⇒ lim
t→∞

qtx0 = x0,

q ≤ −1⇒ the sequence oscillates between + and − and the limit does not exist

In Example 1.5, x0 = 0 is the unique fixed point. Consider now the difference equation xt+1 = x2
t −6.

Then, the fixed points are the solutions of x = x2 − 6, that is, x0 = −2 and x0 = 3.

In the following definitions, ‖X − Y ‖ stands for the Euclidean distance between X and Y . For
example, if X = (1, 2, 3) and Y = (3, 6, 7), then

‖X − Y ‖ =
√

(3− 1)2 + (6− 2)2 + (7− 3)2 =
√

36 = 6.

Definition 2.5.

• A fixed point X0 is called stable if for any close enough initial state X0, the resulting trajectory
{Xt} exists and stays close forever to X0, that is, for any positive real ε, there exists a positive
real δ(ε) such that if ‖X0 −X0‖ < δ(ε), then ‖Xt −X0‖ < ε for every t.
• A stable fixed point X0 is called locally asymptotically stable (l.a.s.) if the trajectory {Xt}

starting from any initial point X0 close to enough to X0, converges to the fixed point.
• A stable fixed point is called globally asymptotically stable (g.a.s.) if any trajectory generated

by any initial point X0 converges to it.
• A fixed point is unstable if it is not stable or asymptotically stable.

Remark 2.6.

• If X0 is stable, but not l.a.s., {Xt} need not approach X0.
• A g.a.s. fixed point is necessarily unique.
• If X0 is l.a.s., then small perturbations around X0 decay and the trajectory generated by the

system returns to the fixed point as the time grows.

Definition 2.7. Let P be an integer larger than 1. A series of vectors X0, X1, . . . , XP−1 is called a
P–period cycle of system f if a trajectory starting from X0 goes through X1, . . . , XP−1 and returns
to X0, that is

Xt+1 = f(Xt), t = 0, 1, . . . , P − 1, XP = X0.

Observe that the series of vectors X0, X1, . . . , XP repeats indefinitely in the trajectory,

{Xt} = {X0, X1, . . . , XP−1, X0, X1, . . . , XP−1, . . .}.

For this reason, the trajectory itself is called a P–cycle.

Example 2.8. In Example 1.3 (xt+1 = qxt) with q = −1 all the trajectories contains 2–cycles,
because a typical path is

{x0,−x0, x0,−x0, . . .}.
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Example 2.9. In Example 1.4 where yt+2 = −yt, to find the possible cycles of the equation, first we
write it as first order system using Example 2.1, to obtain

Xt+1 =

(
x1,t+1

x2,t+1

)
=

(
−x2,t

x1,t

)
≡ f(Xt).

Let X0 = (2, 4). Then

X1 = f(X0) = (−4, 2),

X2 = f(X1) = (−2,−4),

X3 = f(X2) = (4,−2),

X4 = f(X3) = (2, 4) = X0.

Thus, a 4–cycle appears starting at X0. In fact, any trajectory is a 4–cycle.

3. First order linear difference equations

The linear equation is of the form

(3.1) xt+1 = axt + b, xt ∈ R, a, b ∈ R.

Consider first the case b = 0 (homogeneous case). Then, by Theorem 2.2 the solution is xt = atx0,
t = 0, 1, . . .. Consider now the non–homogeneous case, b 6= 0. Let us find the fixed points of the
equation. They solve (see Definition 2.3)

x0 = ax0 + b,

hence there is no fixed point if a = 1. However, if a 6= 1, the unique fixed point is

x0 =
b

1− a
.

Define now yt = xt − x0 and replace xt = yt + x0 into (3.1) to get

yt+1 = ayt,

hence yt = aty0. Returning to the variable xt we find that the solution of the linear equation is

xt = x0 + at(x0 − x0)

=
b

1− a
+ at

(
x0 −

b

1− a

)
.

Theorem 3.1. In (3.1), the fixed point x0 = b
1−a is g.a.s. if and only if |a| < 1.

Proof. Notice that limt→∞ a
t = 0 iff |a| < 1 and hence limt→∞ xt = limt→∞ x

0 + at(x0 − x0) = x0 iff
|a| < 1, independently of the initial x0. �

The convergence is monotonous if 0 < a < 1 and oscillating if −1 < a < 0.

Example 3.2 (A Multiplier–Accelerator Model of Growth). Let Yt denote national income, It total
investment, and St total saving—all in period t. Suppose that savings are proportional to national
income, and that investment is proportional to the change in income from period t to t + 1. Then,
for t = 0, 1, 2, . . .,

St = αYt,

It+1 = β(Yt+1 − Yt),
St = It.

The last equation is the equilibrium condition that saving equals investment in each period. Here
β > α > 0. We can deduce a difference equation for Yt and solve it as follows. From the first
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and third equation, It = αYt, and so It+1 = αYt+1. Inserting these into the second equation yields
αYt+1 = β(Yt+1 − Yt), or (α− β)Yt+1 = −βYt. Thus,

Yt+1 =
β

β − α
Yt =

(
1 +

α

β − α

)
Yt, t = 0, 1, 2, . . . .

The solution is

Yt =

(
1 +

α

β − α

)t
Y0, t = 0, 1, 2, . . . .

Thus, Y grows at the constant proportional rate g = α/(β − α) each period. Note that g =
(Yt+1 − Yt)/Yt.

Example 3.3 (A Cobweb Model). Consider a market model with a single commodity where pro-
ducer’s output decision must be made one period in advance of the actual sale—such as in agricultural
production, where planting must precede by an appreciable length of time the harvesting and sale
of the output. Let us assume that the output decision in period t is based in the prevailing price Pt,
but since this output will no be available until period t+ 1, the supply function is lagged one period,

Qs,t+1 = S(Pt).

Suppose that demand at time t is determined by a function that depends on Pt,

Qd,t+1 = D(Pt).

Supposing that functions S and D are linear and that in each time period the market clears, we have
the following three equations

Qd,t = Qs,t,

Qd,t+1 = α− βPt+1, α, β > 0,

Qs,t+1 = −γ + δPt, γ, δ > 0.

By substituting the last two equations into the first the model is reduced to the difference equation
for prices

Pt+1 = − δ
β
Pt +

α + γ

β
.

The fixed point is P 0 = (α + γ)/(β + δ), which is also the equilibrium price of the market, that is,
S(P 0) = D(P 0). The solution is

Pt+1 = P 0 +

(
− δ
β

)t
(P0 − P 0).

Since −δ/β is negative, the solution path is oscillating. It is this fact which gives rise to the cobweb
phenomenon. There are three oscillations patterns: it is explosive if δ > β (S steeper than D),
uniform if δ = β, and damped if δ < β (S flatter than D). The three possibilities are illustrated
in the graphics below. The demand is the downward–slopping line, with slope −β. The supply is
the upward–slopping line, with slope δ. When δ > β, as in Figure 3, the interaction of demand
and supply will produce an explosive oscillation as follows: Given an initial price P0, the quantity
supplied in the next period will be Q1 = S(P0). In order to clear the market, the quantity demanded
in period 1 must be also Q1, which is possible if and only if price is set at the level of P1 given
by the equation Q1 = D(P1). Now, via the S curve, the price P1 will lead to Q2 = S(P1) as the
quantity supplied in period 2, and to clear the market, price must be set at the level of P2 according
to the demand curve. Repeating this reasoning, we can trace out a “cobweb” around the demand
and supply curves.
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Figure 1. Cobweb diagram with damped oscillations

Figure 2. Cobweb diagram with uniform oscillations

Figure 3. Cobweb diagram with explosive oscillations

4. Second order linear difference equations

The second–order linear difference equation is

xt+2 + a1xt+1 + a0xt = bt,
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where a0 and a1are constants and bt is a given function of t. The associated homogeneous equation
is

xt+2 + a1xt+1 + a0xt = 0,

and the associated characteristic equation is

r2 + a1r + a0 = 0.

This quadratic equation has solutions

r1 = −1

2
a1 +

1

2

√
a2

1 − 4a0, r2 = −1

2
a1 −

1

2

√
a2

1 − 4a0.

There are three different cases depending of the sign of the discriminant a2
1 − 4a0 of the equation.

When it is negative, the solutions are (conjugate) complex numbers. Recall that a complex number
is z = a + ib, where a and b are real numbers and i =

√
−1 is called the imaginary unit, so that

i2 = −1. The real part of z is a, and the imaginary part of z is b. The conjugate of z = a + ib is
z = a− ib. Complex numbers can be added, z + z′ = (a+ a′) + i(b+ b′), and multiplied,

zz′ = (a+ ib)(a′ + ib′) = aa′ + iab′ + ia′b+ i2bb′ = (aa′ − bb′) + i(ab′ + a′b).

For the following theorem we need the modulus of z, ρ = |z| =
√
a2 + b2, and the argument of z,

which is the angle θ ∈ (−π/2, π/2] such that tan θ = b/a. It is useful to recall the following table of
trigonometric values

θ sin θ cos θ tan θ

0 0 1 0

π
6

1
2

√
3

2

√
3

3

π
3

√
3

2
1
2

√
3

π
2

1 0 ∞

For the negative values of the argument θ, observe that sin (−θ) = − sin θ and cos (−θ) = cos θ, so
that tan (−θ) = − tan θ.
For example, the modulus and argument of 1 − i is ρ =

√
2 and θ = −π/2, respectively, since

tan θ = −1/1 = −1.

Theorem 4.1. The general solution of

(4.1) xt+2 + a1xt+1 + a0xt = 0 (a0 6= 0)

is as follows:

(1) If a2
1 − 4a0 > 0 (the characteristic equation has two distinct real roots),

xt = Art1 +Brt2, r1,2 = −1

2
a1 ±

1

2

√
a2

1 − 4a0.

(2) If a2
1 − 4a0 = 0 (the characteristic equation has one real double roots),

xt = (A+Bt)rt, r = −1

2
a1.

(3) If a2
1 − 4a0 < 0 (the characteristic equation has no real roots),

xt = ρt(A cos θt+B sin θt), ρ =
√
a0, tan θ = −

√
4a0 − a2

1

a1

, θ ∈ [0, π].

Remark 4.2. When the characteristic equation has complex roots, the solution of (4.1) involves
oscillations. Note that when ρ < 1, ρt tends to 0 as t→∞ and the oscillations are damped. If ρ > 1,
the oscillations are explosive, and in the case ρ = 1, we have undamped oscillations.
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Example 4.3. Find the general solutions of

(a) xt+2 − 7xt+1 + 6xt = 0, (b) xt+2 − 6xt+1 + 9xt = 0, (c) xt+2 − 2xt+1 + 4xt = 0.

Solution: (a) The characteristic equation is r2− 7r+ 6 = 0, whose roots are r1 = 6 and r2 = 1, so
the general solution is

xt = A6t +B, A,B ∈ R.
(b) The characteristic equation is r2 − 6r + 9 = 0, which has a double root r = 3. The general
solution is

xt = 3t(A+Bt).

(c) The characteristic equation is r2−2r+4 = 0, with complex solutions r1 = 1
2
(2+
√
−12) = (1+i

√
3),

r2 = (1− i
√

3). Here ρ = 2 and tan θ = −
√

12
−2

=
√

3. this means that θ = π/3. The general solution
is

xt = 2t
(
A cos

π

3
t+B sin

π

3
t
)
.

4.1. The nonhomogeneous case. Now consider the nonhomogeneous equation

(4.2) xt+2 + a1xt+1 + a0xt = bt,

and let x∗t be a particular solution. It turns out that solutions of the equation have an interesting
structure, due to the linearity of the equation.

Theorem 4.4. The general solution of the nonhomogeneous equation (4.2) is the sum of the general
solution of the homogeneous equation (4.1) and a particular solution x∗t of the nonhomogeneous
equation.

Example 4.5. Find the general solution of xt+2 − 4xt = 3.

Solution: Note that x∗t = −1 is a particular solution. To find the general solution of the homoge-
neous equation, consider the solutions of the characteristic equation, m2− 4 = 0, m1,2 = ±2. Hence,
the general solution of the nonhomogeneous equation is

xt = A(−2)t +B2t − 1.

Example 4.6. Find the general solution of xt+2 − 4xt = t.

Solution: Now it is not obvious how to find a particular solution. We can try with the method of
undetermined coefficients and try with some expression of the form x∗t = Ct+D. Then, we look for
constants a, b such that x∗t is a solution. This requires

C(t+ 2) +D − 4(Ct+D) = t, ∀t = 0, 1, 2, . . .

One must have C − 4C = 1 and 2C +D− 4D = 0. It follows that C = −1/3 and D = −2/9. Thus,
the general solution is

xt = A(−2)t +B2t − t/3− 2/9.

Example 4.7. Find the solution of xt+2 − 4xt = t satisfying x0 = 0 and x1 = 1/3.

Solution: Using the general solution found above, we have two equations for the two unknown
parameters A and B:

A+B + 2
9

= 0
−2A+ 2B − 1

3
+ 2

9
= 1

3

}
.

The solution is A = −2/9 and B = 0. Thus, the solution of the nonhomogeneous equation is

xt = −2

9
(−2)t − t

2
+

2

9
.
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The method of undetermined coefficients for solving equation (4.2) suppose that a particular solution
has the form of the nonhomogeneous term, bt. The method works quite well when this term is of the
form

at, tm, cos at, sin at

or linear combinations of them.

Example 4.8. Solve the equation xt+2 − 5xt+1 + 6xt = 4t + t2 + 3.

Solution: The homogeneous equation has characteristic equation r2−5r+6 = 0, with two different
real roots r1,2 = 2, 3. Its general solution is, therefore, A2t + B3t. To find a particular solution we
look for constants C, D, E and F such that a particular solution is

x∗t = C4t +Dt2 + Et+ F.

Plugging this into the equation we find

C4t+2 +D(t+ 2)2 + E(t+ 2) + F − 5(C4t+1 +D(t+ 1)2 + E(t+ 1) + F )

+ 6(C4t +Dt2 + Et+ F ) = 4t + t2 + 3.

Expanding and rearranging yields

2C4t + 2Dt2 + (−6D + 2E)t+ (−D − 3E + 2F ) = 4t + t2 + 3.

This must hold for every t = 0, 1, 2, . . . thus,

2C = 4,

2D = 1,

−6D + 2E = 0,

−D − 3E + 2F = 3.

It follows that C = 1/2, D = 1/2, E = 3/3 and F = 4. The general solution is

xt = A2t +B3t +
1

2
4t +

1

2
t2 +

3

2
t+ 4.

Example 4.9 (A Multiplier–Accelerator Growth Model). Let Yt denote national income, Ct total
consumption, and It total investment in a country at time t. Assume that for t = 0, 1, . . . ,

(i) Yt = Ct + It (income is divided between consumption and investment)

(ii) Ct+1 = aYt + b (consumption is a linear function of previous income)

(iii) It+1 = c(Ct+1 − Ct) (investment is proportional to to the change in consumption),

where a, b, c > 0. Find a second order difference equation describing this national economy.

Solution: We eliminate two of the unknown functions as follows. From (i), we get (iv) Yt+2 = Ct+2+
It+2. Replace now t by t+1 in (ii) and (iii) to get (v) Ct+2 = aYt+1 +b and (vi) It+2 = c(Ct+2−Ct+1),
respectively. Then, inserting (iii) and (v) into (vi) gives It+2 = ac(Yt+1 − Yt). Inserting this result
and (v) into (iv) we get Yt+2 = aYt+1 + b+ ac(Yt+1 − Yt) and rearranging we arrive to

Yt+2 − a(1 + c)Yt+1 + acYt = b, t = 0, 1, . . .

The form of the solution depends on the coefficients a, b, c.
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5. Linear systems of difference equations

Now we suppose that the dynamic variables are vectors, Xt ∈ Rn. A first order system of linear
difference equations with constant coefficients is given by

x1,t+1 = a11x1,t + · · ·+ a1nxn,t + b1,t
...

xn,t+1 = an1x1,t + · · ·+ annxn,t + bn,t

An example is

x1,t+1 = 2x1,t − x2,t + 1

x2,t+1 = x1,t + x2,t + e−t.

Most often we will rewrite systems omitting subscripts using different letters for different variables,
as in

xt+1 = 2xt − yt + 1

yt+1 = xt + yt + e−t.

A linear system is equivalent to the matrix equation

Xt+1 = AXt +Bt,

where

Xt =

 x1,t
...
xn,t

 , A =

 a11 . . . a1n
...

. . .
...

an1 . . . ann

 , B =

 b1,t
...
bn,t


We will center on the case where the independent term Bt ≡ B is a constant vector.

5.1. Homogeneous systems. Consider the homogeneous system Xt+1 = AXt.
Note that X1 = AX0, X2 = AX1 = AAX0 = A2X0. Thus, given the initial vector X0, the solution is

Xt = AtX0.

In the case that A be diagonalizable, P−1AP = D with D diagonal, the expression above simplifies
to

Xt = PDtP−1X0,

that is easy to compute since D is diagonal.

Example 5.1. Find the general solution of the system(
xt+1

yt+1

)
=

(
4 −1
2 1

)(
xt
yt

)

Solution: The matrix A =

(
4 −1
2 1

)
has characteristic polynomial pA(λ) = λ2 − 5λ + 6, with

roots λ1 = 3 and λ2 = 2. Thus, the matrix is diagonalizable. It is easy to find the eigenspaces

S(3) =< (1, 1) >, S(2) =< (1, 2) > .

Hence, the matrix P is

P =

(
1 1
1 2

)
, P−1 =

(
2 −1
−1 1

)
, D =

(
3 0
0 2

)
and the solution

Xt =

(
1 1
1 2

)(
3t 0
0 2t

)(
2 −1
−1 1

)
X0 =

(
2 3t − 2t −3t + 2t

2 3t − 2t+1 − 1 −3t + 2t+1

)(
x0

y0

)
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Supposing that the initial condition is (x0, y0) = (1, 2), the solution is given by

xt = 2 3t − 2t + 2(−3t + 2t),

yt = 2 3t − 2t+1 − 1 + 2(−3t + 2t+1).

5.2. Nonhomogeneous systems. Consider the system Xt+1 = AXt + B, where B is a non–null,
constant vector.
To obtain a closed-form solution of the system, we begin by noting that

X1 = AX0 +B,

X2 = AX1 +B = A(AX0 +B) +B = A2X0 + (A+ In)B,

...

Xt = AXt−1 +B = · · · = AtX0 + (At−1 + At−2 + · · ·+ In)B.

Observe that

(At−1 + At−2 + · · ·+ In)(A− In) = At + At−1 + · · ·+ A− At−1 − · · · − A− In = At − In.

Thus, assuming that (A− In) is invertible, we find

At−1 + At−2 + · · ·+ In = (At − In)(A− In)−1.

Plugging this equality into the expression for Xt above one gets

Xt = AtX0 + (At − In)(A− In)−1B.

On the other hand, note that the constant solutions of the nonhomogeneous system (or fixed points
of the system) satisfy

X0 = AX0 +B.

Assuming again that the matrix A− In has inverse, we can solve for X0

(In − A)X0 = B ⇒ X0 = (In − A)−1B.

Then, collecting all the above observations, we can write the solution of the nonhomogeneous system
in a nice form as

(5.1) Xt = AtX0 − (At − In)X0 = X0 + At(X0 −X0).

Theorem 5.2. Suppose that |A− In| 6= 0. Then, the general solution of the nonhomogeneous system
is given in Eqn. (5.1). Moreover, when A is diagonalizable, the above expression may be written as

(5.2) Xt = X0 + PDtP−1(X0 −X0),

where P−1AP = D with D diagonal.

Proof. Eqn. (5.2) easily follows from Eqn. (5.1), taking into account that At = PDtP−1. �

Example 5.3. Find the general solution of the system(
xt+1

yt+1

)
=

(
4 −1
2 1

)(
xt
yt

)
+

(
1
−1

)

Solution: The fixed point X∗ is given by

(I3 − A)−1B =

(
−3 1
−2 0

)−1(
1
−1

)
=

1

2

(
0 −1
2 −3

)(
1
−1

)
=

(
1/2
5/2

)
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By the example above we already know the general solution of the homogeneous system. The general
solution of the nonhomogeneous system is then(

xt
yt

)
=

(
2 3t − 2t −3t + 2t

2 3t − 2t+1 − 1 −3t + 2t+1

)(
x0 − 1/2
y0 − 5/2

)
+

(
1/2
5/2

)
.

5.3. Stability of linear systems. We study here the stability properties of a first order system
Xt+1 = AXt +B where |In − A| 6= 0.

For the following theorem, recall that for a complex number z = α+βi, the modulus is ρ =
√
α2 + β2.

For a real number α, the modulus is |α|.

Theorem 5.4. A necessary and sufficient condition for system Xt+1 = AXt +B to be g.a.s. is that
all roots of the characteristic polynomial pA(λ) (real or complex) have moduli less than 1. In this
case, any trajectory converges to X∗ = (In − A)−1B as t→∞.

We can give an idea of the proof of the above theorem in the case where the matrix A is diagonalizable.
As we have shown above, the solution of the nonhomogeneous system in this case is

Xt = X0 + PDtP−1(X0 −X0),

where

D =


λt1 0 . . . 0
0 λt2 . . . 0
...

...
. . .

...
0 0 . . . λtn

 ,

and λ1, . . . , λn are the real roots (possibly repeated) of pA(λ). Since |λj| < 1 for all j, the diagonal
elements of Dt tends to 0 as t goes to ∞, since λtj ≤ |λj|t → 0. Hence

lim
t→∞

Xt = X0.

Example 5.5. Study the stability of the system

xt+1 = xt −
1

2
yt + 1,

yt+1 = xt − 1.

Solution: The matrix of the system is

(
1 −1/2
1 0

)
, with characteristic equation λ2−λ+1/2 = 0.

The (complex) roots are λ1,2 = 1/2± i/2. Both have modulus ρ =
√

1/4 + 1/4 = 1/
√

2 < 1, hence
the system is g.a.s. and the limit of any trajectory is the equilibrium point,

X0 =

(
1− 1 0− (−1/2)
0− 1 1− 0

)−1(
1
−1

)
=

(
3
2

)
.

Example 5.6. Study the stability of the system

xt+1 = −xt + yt,

yt+1 = −xt/2− yt/2.

Solution: The matrix of the system is

(
1 3

1/2 1/2

)
, with characteristic equation λ2−(3/2)λ−1 =

0. The roots are λ1 = 2 and λ2 = −1/2. The system is not g.a.s. However, there are initial conditions
X0 such that the trajectory converges to the fixed point X0 = (0, 0). This can be seen once we find
the solution

Xt = PDtP−1X0.
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The eigenspaces are S(2) =< (3, 1) > and S(−1/2) =< (2,−1) >, thus

P =

(
3 2
1 −1

)
, P−1 =

(
1/5 2/5
1/5 −3/5

)
.

The solution is (
xt+1

yt+1

)
=

(
2t 3

5
(x0 + 2y0) + 21−t 1

5
(x0 − 3y0)

2t 1
5
(x0 + 2y0)− 2−t 1

5
(x0 − 3y0)

)
.

If the initial conditions are linked by the relation x0 + 2y0 = 0, then the solution converges to (0, 0).
For this reason, the line x + 2y = 0 is called the stable manifold. Notice that the stable manifold is
in fact the eigenspace associated to the eigenvalue λ2 = −1/2, since

S(−1/2) =< (2,−1) >= {x+ 2y = 0}.

For any other initial condition (x0, y0) /∈ S(−1/2), the solution does not converge.

Example 5.7 (Dynamic Cournot adjustment). The purpose of this example is to investigate under
what conditions a given adjustment process converges to the Nash equilibrium of the Cournot game.
Consider a Cournot duopoly in which two firms produce the same product and face constant marginal
costs c1 > 0 and c2 > 0. The market price Pt is a function of the total quantity of output produced
Q = q1 + q2 in the following way

P = α− βQ, α > ci, i = 1, 2, β > 0.

In the Cournot duopoly model each firm chooses qi to maximize profits, taking as given the production
level of the other firm, qj. At time t, firm i’s profit is

πi = qiP − ciqi.

As it is well–known, taking ∂πi/∂qi = 0 we obtain the best response of firm i, which depends on the
output of firm j as follows1

br1 = a1 − q2/2, br2 = a2 − q1/2,

where ai =
α− ci

2β
, i = 1, 2. We suppose that a1 > a2/2 and that a2 > a1/2 in order to have positive

quantities in equilibrium, as will be seen below.
The Nash equilibrium of the game, (qN1 , q

N
2 ), is a pair of outputs of the firms such that none firm has

incentives to deviate from it unilaterally, that is, it is the best response against itself. This means
that the Nash equilibrium of the static game solves

qN1 = br1(q
N
2 ),

qN2 = br2(q
N
1 ).

In this case

qN1 = a1 − qN2 /2,
qN2 = a2 − qN2 /2.

Solving, we have

qN1 =
4

3

(
a2 −

a1

2

)
,

qN2 =
4

3

(
a1 −

a2

2

)
,

1Actually, the best response map is bri = max{ai − qj/2, 0}, since negative quantities are not allowed.
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which are both positive by assumption. As a specific example, suppose for a moment that the game

is symmetric, with c1 = c2 = c. Then, a1 = a2 =
α− c

2β
and the Nash equilibrium is the output

qN1 =
α− c

3β
,

qN2 =
α− c

3β
.

Now we turn to the general asymmetric game and introduce a dynamic component in the game as
follows. Suppose that each firm does not choose its Nash output instantaneously, but they adjust
gradually its output qi towards its best response bri at each time t as indicated below

(5.3)

{
q1,t+1 = q1,t + d1(br1,t − q1,t) = q1,t + d1(a1 − 1

2
q2,t − q1,t),

q2,t+1 = q1,t + d2(br2,t − q2,t) = q2,t + d2(a2 − 1
2
q1,t − q2,t),

where d1 and d2 are positive constants. The objective is to study whether this tattonement process
converges to the Nash equilibrium.
To simplify notation, let us rename x = q1 and y = q2. Then, rearranging terms in the system (5.3)
above, it can be rewritten as {

xt+1 = (1− d1)xt − d1
2
yt + d1a1,

yt+1 = (1− d2)yt − d2
2
xt + d2a2.

It is easy to find the equilibrium points by solving the system{
x = (1− d1)x− d1

2
y + d1a1,

y = (1− d2)y − d2
2
x+ d2a2.

The only solution is precisely the Nash equilibrium,

(xN , yN) =

(
4

3

(
a2 −

a1

2

)
,
4

3

(
a1 −

a2

2

))
.

Under what conditions this progressive adjustment of the produced output does converge to the Nash
equilibrium? According to the theory, it depends on the module of the eigenvalues being smaller
than 1. Let us find the eigenvalues of the system. The matrix of the system is(

1− d1 −d1
2

−d2
2

1− d2

)
To simplify matters, let us suppose that the adjustment parameter is the same for both players,
d1 = d2 = d. The eigenvalues of the matrix are

λ1 = 1− d

2
, λ2 = 1− 3d

2
,

which only depend on d. We have

|λ1| < 1 iff 0 < d < 4,

|λ2| < 1 iff 0 < d < 4/3,

therefore |λ1| < 1 and |λ2| < 1 iff 0 < d < 4/3. Thus, 0 < d < 4/3 is a necessary and sufficient
condition for convergence to the Nash equilibrium of the one shot game from any initial condition
(g.a.s. system).
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6. The nonlinear first order equation

We investigate here the stability of the solutions of an autonomous first order difference equation

xt+1 = f(xt), t = 0, 1, . . . ,

where f : I → I is nonlinear and I is an interval of the real line. Recall that a function f is said to
be of class C1 in an open interval, if f ′ exists and it is continuous in that interval. For example, the
functions x2, cosx or ex are C1 is the whole real line, but |x| is not differentiable at 0, so is not C1

in any open interval that contains 0.

Theorem 6.1. Let x0 ∈ I a fixed point of f , and suppose that f is C1 in an open interval around
x0, Iδ = (x0 − δ, x0 + δ).

(1) If |f ′(x0)| < 1, then x0 is locally asymptotically stable;
(2) If |f ′(x0)| > 1, then x0 is unstable.

Proof. Since f ′ is continuous in Iδ and f ′(x0) < 1, there exists some open interval Iδ = (x0−δ, x0 +δ)
and a positive number k < 1 such that |f ′(x)| ≤ k for any x ∈ Iδ.

(1) By the mean value theorem (also called Theorem of Lagrange), there exists some c between
x0 and x0 such that

f(x0)− f(x0) = f ′(c)(x0 − x0),

or

x1 − x0 = f ′(c)(x0 − x0),

since x0 = f(x0) by definition of fixed point. Consider an initial condition x0 ∈ Iδ. Then any
c between x0 and x0 belongs to Iδ and thus taking absolute values in the equality above we
get

(6.1) |x1 − x0| = |f ′(c)||x0 − x0| ≤ k|x0 − x0|.
Also note that |x1 − x0| ≤ kδ < δ, thus x1 ∈ Iδ. Reasoning as above, one gets

|x2 − x0| = |f(x1)− x0| = |f ′(c)||x1 − x0| ≤ k|x1 − x0| ≤ k2|x0 − x0|.
where c is a number between x1 and x0 that belongs to Iδ (and thus |f ′(c)| ≤ k). Continuing
in this fashion we get after t steps

|xt − x0| ≤ kt|x0 − x0| → 0, as t→∞.
So xt converges to the fixed point x0 as t→∞, and x0 is l.a.s.

(2) Now suppose that |f ′(x0)| > 1. Again by continuity of f ′, there exists δ > 0 and K > 1 such
that |f ′(x)| > K for any x ∈ Iδ. By equation (6.1) one has

|x1 − x0| = |f ′(c)||x0 − x0| > K|x0 − x0|
and after t steps

|xt − x0| > Kt|x0 − x0|.
Since Kt tends to ∞ as t → ∞, then xt departs more and more from x0 at each step, and
the fixed point x0 is unstable.

�

Remark 6.2. If |f ′(x)| < 1 for every point x ∈ I, then the fixed point x0 is globally asymptotically
stable.

Example 6.3 (Population growth models). In the Malthus model of population growth it is postu-
lated that a given population x grows at constant rate r,

xt+1 − xt
xt

= r, or xt+1 = (1 + r)xt.
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This is a linear equation and the population grows unboundedly if the per capita growth rate r is
positive2. This is not realistic for large t. When the population is small, there are ample environ-
mental resources to support a high birth rate, but for later times, as the population grows, there
is a higher death rate as individuals compete for space and food. Thus, the growth rate should be
decreasing as the population increases. The simplest case is to take a linearly decreasing per capita
rate, that is

r
(

1− xt
K

)
,

where K is the carrying capacity. This modification is known as the Verhulst’ law. Then the
population evolves as

xt+1 = xt

(
1 + r − r

K
xt

)
,

which is not linear. The function f is quadratic, f(x) = x(1 + r − rx/K). In Fig. 6.3 is depicted a
solution with x0 = 5, r = 0.5 and K = 20.

We observe that the solution converges to 20. In fact, there are two fixed points of the equation, 0
(extinction of the population) and x0 = K (maximum carrying capacity). Considering the derivative
of f at these two fixed points, we have

f ′(0) = 1 + r − 2
r

K
x
∣∣∣
x=0

= 1 + r > 1,

f ′(K) = 1 + r − 2
r

K
x
∣∣∣
x=K

= 1− r.

Thus, according to Theorem 6.1, 0 is unstable, but K is l.a.e. iff |1− r| < 1, or 0 < r < 2.

2The solution is xt = (1 + r)tx0, why?
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6.1. Phase diagrams. The stability of a fixed point of the equation

xt+1 = f(xt), t = 0, 1, . . . ,

can also be studied by a graphical method based in the phase diagram. This consists in drawing the
graph of the function y = f(x) in the plane xy. Note that a fixed point x0 corresponds to a point
(x0, x0) where the graph of y = f(x) intersects the straight line y = x.
The following figures show possible configurations around a fixed point. The phase diagram is at
the left (plane xy), and a solution sequence is shown at the right (plane tx). Notice that we have
drawn the solution trajectory as a continuous curve because it facilitates visualization, but in fact it
is a sequence of discrete points. In Fig. 4, f ′(x0) is positive, and the sequence x0, x1, . . . converges
monotonically to x0, whereas in Fig. 5, f ′(x0) is negative and we observe a cobweb–like behavior,
with the sequence x0, x1, . . . converging to x0 but alternating between values above and below the
equilibrium. In Fig. 6, the graph of f near x0 is too steep for convergence. After many iterations in
the diagram, we observe an erratic behavior of the sequence x0, x1, . . .. There is no cyclical patterns
and two sequences generated from close initial conditions depart along time at an exponential rate
(see Theorem 6.1 above). It is often said that the equation exhibits chaos. Finally, Fig. 7 is the
phase diagram of an equation admitting a cycle of period 3.

Figure 4. x0 stable, f ′(x0) ∈ (0, 1)

Figure 5. x0 stable, f ′(x0) ∈ (−1, 0)
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Figure 6. x0 unstable, |f ′(x0)| > 1

Figure 7. A cycle of period 3


