Tobit Estimation in gret1 Quantitative Microeconomics

R. Mora

Department of Economics Universidad Carlos III de Madrid

Outline

- Introduction
- 2 Tobit in gret1
- 3 Maximum Likelihood of an Interval Regression Model

The Tobit Model and ML Estimation

The Tobit Model

•
$$h^* = \beta x + \varepsilon$$

•
$$\varepsilon \sim N(0, \sigma^2)$$

•
$$\begin{cases} \text{if } h^* > 0 \Rightarrow h = \beta x + \varepsilon \\ \text{if } h^* \le 0 \Rightarrow h = 0 \end{cases}$$

$$\begin{split} \hat{\beta}^{ML} = \mathop{\mathsf{arg\,max}} \quad & \sum_{i} \left\{ 1 \left(h_{i} > 0 \right) \log \left(\left(\frac{1}{\sigma} \right) \phi \left(\frac{h_{i} - \beta x_{i}}{\sigma} \right) \right) \right. \\ & \left. + 1 \left(h_{i} = 0 \right) \log \left(1 - \Phi \left(\frac{\beta x_{i}}{\sigma} \right) \right) \right\} \end{split}$$

in gret1, a quasi-Newton algorithm is used (the BFGS algorithm)

Basic Commands in gret1 for Tobit Estimation

- tobit: computes Maximum Likelihood tobit estimation
- omit/add: tests joint significance
- \$yhat: estimates the depdendent variable
- \$1n1: returns the log-likelihood for the last estimated model
- intreg: computes Maximum Likelihood of an interval regression model with normal disturbances
- in this Session, we are going to learn how to use tobit and intreg

tobit depvar indvars -- verbose

- "censoring": the dependent variable only takes nonnegative values, with 0 reserved for the censured observations
- for other cases (censoring from above, at a point different from zero) the dependent variable must be re-defined appropriately
- for two-sided censoring the intreg command may be used
- it is possible to trace all iterations with the --verbose option
- ullet output shows the χ_q^2 statistic test for the null that all slopes are zero
- by default, standard errors are computed using the negative inverse of the Hessian

Example: Simulated Data

The Tobit Model

- $h^* = 10 + 0.5 * educ 5 * kids + \varepsilon$
- $\varepsilon \sim N(0,49)$
- education makes you willing to work more
- having a kid makes you willing to work less
- $\beta x = 5 + 0.5 * educ 5 * kids$
- \bullet $\sigma = 7$

Observed Hours vs. Desired Hours

$$h^* = 5 + 0.5 * educ - 5 * kids + \varepsilon, \varepsilon \sim N(0,49)$$

Histogram of Desired Hours of Work

$$h^* = 5 + 0.5 * educ - 5 * kids + \varepsilon, \varepsilon \sim N(0, 49)$$

Censoring in the Tobit Model

$$h^* = 5 + 0.5 * educ - 5 * kids + \varepsilon, \varepsilon \sim N(0,49)$$

ols with the Full Sample

$$h^* = 5 + 0.5 * educ - 5 * kids + \varepsilon, \varepsilon \sim N(0, 49)$$

Model 1: OLS, using observations 1-1500 Dependent variable: h

	coeffic.	ient	std.	error	t-ratio	p-value	
const	6.605	39	0.75	7742	8.718	7.39e-18	***
educ	0.387	944	0.075	1737	5.161	2.79e-07	***
kids	-4.487	56	0.382	2296	-11.74	1.68e-30	***
Mean depende	nt var	7.3701	01	S.D.	dependent v	ar 6.413	578
Sum squared :	resid	54501.	48	S.E.	of regressi	on 6.033	833
R-squared		0.1160	94	Adjus	ted R-squar	ed 0.114	913
F(2, 1497)		98.309	67	P-val	ue(F)	7.67e	-41
Log-likeliho	od ·	-4822.9	980	Akaik	e criterion	9651.	960
Schwarz crit	erion	9667.8	399	Hanna	n-Quinn	9657.	898

ols with the Restricted Sample

$$h^* = 5 + 0.5 * educ - 5 * kids + \varepsilon, \varepsilon \sim N(0, 49)$$

Model 2: OLS, using observations 1-1223 Dependent variable: h

	coeffic	ient	std.	error	t-ratio	p-	value	
const educ	7.353 0.333	273		54336	9.505 4.360	1.	02e-20 41e-05	***
kids	-2.844	25	0.389	9046	-7.311	4.	79e-13	***
Mean depende	nt var	9.1342	221	S.D.	dependent	var	5.6788	392
Sum squared	resid	37539	.67	S.E.	of regress	sion	5.5470	91
R-squared		0.047	441	Adjus	sted R-squa	ared	0.0458	379
F(2, 1220)		30.380	012	P-val	ue(F)		1.33e-	-13
Log-likeliho	od	-3829.	194	Akaik	ce criterio	on	7664.3	387
Schwarz crit	erion	7679.	715	Hanna	n-Quinn		7670.1	156

tobit Output

$$h^* = 5 + 0.5 * educ - 5 * kids + \varepsilon, \varepsilon \sim N(0, 49)$$

Function evaluations: 48
Evaluations of gradient: 9

Model 3: Tobit, using observations 1-1500 Dependent variable: h

coefficient std. error

const educ kids	4.89 0.46 -4.44	1985	0.89 0.08 0.47	91748	5.476 5.181 -9.443	2.2	4e-08 1e-07 3e-21	*** ***
Mean depende Censored obs Log-likeliho Schwarz crit	od	7.447 -4412. 8853.	277 070	sigma Akaik	dependent e criterio n-Quinn		6.233 7.089 8832. 8840.	9319

Test for normality of residual Null hypothesis: error is normally distributed
 Test statistic: Chi-square(2) = 3.57203

with p-value = 0.167627

p-value

Predicting Actual Hours of Work for Those who Work

computing \hat{h}_i^* and \hat{h}_i

- \hat{h}_{i}^{*} : genr h_star_hat=\$yhat
- ullet for each observation, $\hat{h}_i = \max\left\{0, \hat{eta} x_i
 ight\}$

E[h|h>0,x]

- $E[h|h>0,x] = \beta x + E[\varepsilon|\beta x + \varepsilon>0,x]$
- it can be shown that: $E[h|h>0,x]=\beta x+\sigma \frac{\phi(\frac{\beta x}{\sigma})}{\Phi(\frac{\beta x}{\sigma})}$
- $\frac{\phi(\frac{\beta x}{\sigma})}{\Phi(\frac{\beta x}{\sigma})}$ is usually referred to as the inverse of Mills ratio
 - incidentally, John Mills actually used $\frac{1-\Phi(\frac{\beta x}{\sigma})}{\phi(\frac{\beta x}{\sigma})}$

The Inverse of Mills Ratio

the higher $\frac{\beta x}{\sigma}$, the higher the probability of participation and the lower the correction

Predicting Actual Hours of Work

E[h|x]

- E[h|x] = Pr(h>0) E[h|h>0,x]
- it can be shown that: $E[h|x] = \Phi\left(\frac{\beta x}{\sigma}\right) \left[\beta x + \sigma \frac{\phi(\frac{\beta x}{\sigma})}{\Phi(\frac{\beta x}{\sigma})}\right]$

Understanding the Coefficients and the Slopes

- the Tobit estimates for the coefficients, $\hat{\beta}$, give the marginal effects on the desired number of hours
- frequently, we also want an estimate of the marginal effects on the probability of working and on the actual hours worked

Algebraic Marginal Effects

Probability to Participate

$$\bullet \ \frac{\partial \Pr(h_i > 0)}{\partial x_j} = \phi(\frac{\beta x}{\sigma}) \left(\frac{\beta_j}{\sigma}\right)$$

Actual Hours Worked

- $\bullet \ \frac{\partial E(h_i|x)}{\partial x_j} = \beta_j \Phi\left(\frac{\beta x}{\sigma}\right)$
- aprox. estimates of this effect can be obtained using OLS over the full sample

Individual Marginal Effects: Discrete Change

• we may want to get individual marginal effects

Discrete change

- store estimated coefficients in a vector
- generate a matrix with the controls under scenario 0, x_0 , and another one with the controls under scenario 1, x_1
- ullet predict index functions $\hat{eta}^{ML}x_0$ and $\hat{eta}^{ML}x_1$
- simulate censuring
- generate the individual marginal effects

Example: The Effect of Having an Extra Kid

```
# numerical individual marginal effects: having an extra kid
genr beta=$coeff
genr kids1=kids+1
matrix x0={const,educ,kids}
matrix x1={const,educ,kids1}
series h0 = (x0*beta>0)*x0*beta
series h1 = (x1*beta>0)*x1*beta
series Mg_kid=h1-h0
summary Mg_kid --by=educ --simple
```

Example: summary Mg_kid --by=educ --simple

the effect is also smaller with higher education

```
Minimum
                     Mean
                                                 Maximum
                                                               Std. Dev.
educ = 8
                   -9.4738
                                   -9.4738
                                                  -9.4738
                                                                   0.0000
educ = 12
                   -7.1477
                                   -11.164
                                                  -5.9182
                                                                   2.2237
educ = 16
                   -5.0951
                                   -7.6081
                                                  -2.3627
                                                                   2.6231
educ = 21
                   -4.4750
                                   -4.4750
                                                  -4.4750
                                                                   0.0000
```

The Interval Regression Model

$m_i \leq x_i \beta + \varepsilon_i \leq M_i$

- the dependent variable is unobserved for some (possibly all) observations
- we observe instead an interval in which the dependent variable lies
- In practice, each observation belongs to one of four categories:
 - left-unbounded
 - right-unbounded
 - bounded
 - point observations

The Interval Regression Model in gret1

intreg minvar maxvar X

- minvar contains m_i, with NAs for left-unbounded observations
- maxvar contains M_i, with NAs for right-unbounded observations
- for some observations m_i may equal M_i
- standard errors are computed using the negative inverse of the Hessian
- if the ——robust flag is given, a "sandwich" estimator for standard errors are calculated
- if you wish to construct a likelihood ratio test, this is easily done by estimating both the full model and the null model

An Example for intreg

```
nulldata 100
# generate artificial data
set seed 201449
x = normal()
epsilon = 0.2*normal()
ystar = 1 + x + epsilon
lo_bound = floor(ystar)
hi_bound = ceil(ystar)
# run the interval model
intreg lo_bound hi_bound const x
```

intreg Output

```
Model 1: Interval estimates, using observations 1-100 Lower limit: lo bound, Upper limit: hi bound
```

	coeffic	ient	std.	error	z	p-value	
const	0.977619		0.0360159 0.0375009		27.14	2.97e-162 1.02e-154	
~	0.,,,,,,		0.05	, 5005	20.50	1.020 151	
Chi-square(1)	702.1	575	p-value		1.0e-	-154
Log-likeliho	od	-40.45	572	Akaike	criterio	n 86.9	1144
Schwarz crit	erion	94.72	695	Hannan-	Ouinn	90.0	7452
sigma = 0.22 Left-unbound Right-unbound Bounded observe Point observe	ed obser ded obse rvations	rvation: 100					
Test for nor Null hypot Test statis with p-val	hesis: e stic: Ch	rror i: i-squa:	s norm	mally di		d	

Summary

- gret1 allows for ML estimation of the Tobit estimation
- the Tobit model identifies how each control affects both the probability of not censoring and the expectation of the dependent variable given that it is observed
- interval regression by ML can also be conducted in gret1