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Introduction
tl

The Tobit Model and ML Estimation

@ h"=Bx+e
e e~ N(0,0°)
{ if h*>0= h=Px+e
if *<0=h=0

Bt =argmax  T{1(h >0)log((5)0 ("))
+1(h; =0)log (1 - (&2))}

@ in gretl, a quasi-Newton algorithm is used (the BFGS
algorithm)
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Basic Commands in gretl for Tobit Estimation

(*]
]
]
(]
("]

tobit: computes Maximum Likelihood tobit estimation
omit/add: tests joint significance

$yhat: estimates the depdendent variable

$1nl: returns the log-likelihood for the last estimated model

intreg: computes Maximum Likelihood of an interval
regression model with normal disturbances

@ in this Session, we are going to learn how to use tobit and
intreg
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Tobit in gretl

tobit depvar indvars ——verbose

@ “censoring”: the dependent variable only takes nonnegative
values, with O reserved for the censured observations

e for other cases (censoring from above, at a point different from
zero) the dependent variable must be re-defined appropriately

e for two-sided censoring the intreg command may be used
@ it is possible to trace all iterations with the --verbose option

@ output shows the %3 statistic test for the null that all slopes
are zero

@ by default, standard errors are computed using the negative
inverse of the Hessian
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Tobit in gretl

Example: Simulated Data

The Tobit Model
o h*=10+40.5*educ —5* kids + ¢
e £~ N(0,49)

@ education makes you willing to work more
@ having a kid makes you willing to work less
@ Bx=5+0.5xeduc —5xkids

eo=7
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Tobit in gretl

Observed Hours vs. Desired Hours

h* =5+40.5%educ — 5x kids+ €,€ ~ N(0,49)

Censoring
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Tobit in gretl

Histogram of Desired Hours of Work

h* =5+40.5%educ — 5x kids+ €,€ ~ N(0,49)
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Tobit in gretl

Censoring in the Tobit Model

h* =5+40.5%educ — 5x kids+ €,€ ~ N(0,49)

Actual Hours of Work
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ols with the Full Sample

h* =5+40.5%educ — 5x kids + €,€ ~ N(0,49)

Model 1: OLS, using observations 1-1500
Dependent variable: h

coefficient std. error t-ratio p-value

const 6.60589 0.757742 8.718 7.39e-18 ***
educ 0.387944 0.0751737 5.161 2.79e-07 ***
kids -4.48766 0.382296 -11.74 1.68e-30 *x**
Mean dependent var 7.370101 S.D. dependent var 6.413578
Sum squared resid 54501.48 S.E. of regression 6.033833
R-squared 0.116094 Adjusted R-squared 0.114913
F(2, 1497) 98.30967 P-value(F) 7.67e-41
Log-likelihood -4822.980 Akaike criterion 9651.960
Schwarz criterion 9667.899 Hannan-Quinn 9657.898
V.
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ols with the Restricted Sample

h* =5+40.5%educ — 5x kids + €,€ ~ N(0,49)

Model 2: OLS, using observations 1-1223
Dependent variable: h

coefficient std. error t-ratio p-value

const 7.35385 0.773674 9.505 1.02e-20 ***
educ 0.333273 0.0764336 4.360 1l.41e-05 ***
kids -2.84425 0.389046 =73l 4.79e-13 ***

Mean dependent var 9.134221 S.D. dependent var 5.678892

Sum squared resid 37539.67 S.E. of regression 5.547091

R-squared 0.047441 Adjusted R-squared 0.045879

F(2, 1220) 30.38012 P-value(F) 1.33e-13

Log-likelihood -3829.194 Akaike criterion 7664.387

Schwarz criterion 7679.715 Hannan-Quinn 7670.156
V.

R. Mora gretl




tobit Output

h* =5+ 0.5 % educ — 5 x kids + €,€ ~ N(0,49)

Function evaluations: 48
Evaluations of gradient: 9

Model 3: Tobit, using observations 1-1500
Dependent variable: h

coefficient std. error z p-value
const 4.89145 0.893211 5.476 4.34e-08 ***
educ 0.461985 0.0891748 5.181 2.21e-07 ***
kids -4.44067 0.470267 -9.443 3.63e-21 ***

Mean dependent var 7.447435 S.D. dependent var 6.233858

Censored obs 277 sigma 7.089319
Log-likelihood -4412.070 Akaike criterion 8832.141
Schwarz criterion 8853.394 Hannan-Quinn 8840.058

Test for normality of residual -
Null hypothesis: error is normally distributed
Test statistic: Chi-square(2) = 3.57203
with p-value = 0.167627
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Tobit in gretl

Predicting Actual Hours of Work for Those who Work

computing /Aﬁ and h;

° iA;f genr h_star hat=%yhat

@ for each observation, /A1,- = max{O,ﬁx,-}

E[hlh>0,x]

o E[h|h>0,x] =Bx+E[e|Bx+e>0,x]

o(5x)

@ it can be shown that: E[h|h > 0,x] = BX-FG(D(LX)

o(E)
o(Ex)

° is usually referred to as the inverse of Mills ratio

1-o(Ex)
o(Ex)
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Tobit in gretl

The Inverse of Mills Ratio

The Inverse of Mills Ratio
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the higher %X, the higher the probability of participation and the

lower the correction
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Tobit in gretl

Predicting Actual Hours of Work

o E[h|x]=Pr(h>0)E[h|h>0,x]

Bx

@ it can be shown that: E[h|x] = (%) [ﬁx—i—oa)( o)

¢(ﬁ;)]
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Tobit in gretl

Understanding the Coefficients and the Slopes

o the Tobit estimates for the coefficients, f3, give the marginal
effects on the desired number of hours

o frequently, we also want an estimate of the marginal effects on
the probability of working and on the actual hours worked
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Algebraic Marginal Effects

Probability to Participate

dPr(h; X j
° Pr(ng>0) ¢(ﬁ6 ) (%)

Actual Hours Worked
IE(hi|x)
° oy P ( >

@ aprox. estimates of this effect can be obtained using OLS over
the full sample

A
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Tobit in gretl

Individual Marginal Effects: Discrete Change

@ we may want to get individual marginal effects

Discrete change

@ store estimated coefficients in a vector

@ generate a matrix with the controls under scenario 0, xg, and
another one with the controls under scenario 1, xy

o predict index functions BMExy and BMEx,

@ simulate censuring

@ generate the individual marginal effects
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Tobit in gretl

Example: The Effect of Having an Extr

# numerical individual marginal effects: having an extra kid
genr beta=$coeff

genr kidsl=kids+1l

matrix x0={const,educ,kids}

matrix xl={const,educ,kidsl}

series h0 = (x0*beta>0)*x0*beta

series hl = (xl*beta>0)*xl*beta

series Mg_kid=h1l-h0

summary Mg_kid --by=educ --simple
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Example: summary Mg kid ——by=educ ——simple

the effect is also smaller with higher education

Mean Minimum Maximum Std. Dev.
educ = 8 -9.4738 -9.4738 -9.4738 0.0000
educ = 12 -7.1477 -11.164 -5.9182 2.2237
educ = 16 -5.0951 -7.6081 -2.3627 2.6231
educ = 21 -4.4750 -4.4750 -4.4750 0.0000
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Maximum Likelihood of an Interval Regression Model

The Interval Regression Model

@ the dependent variable is unobserved for some (possibly all)
observations

@ we observe instead an interval in which the dependent variable
lies

@ In practice, each observation belongs to one of four categories:

left-unbounded
right-unbounded
bounded

point observations
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Maximum Likelihood of an Interval Regression Model

The Interval Regression Model in gretl

intreg minvar maxvar X

@ minvar contains m;, with NAs for left-unbounded observations

@ maxvar contains M;, with NAs for right-unbounded
observations

@ for some observations m; may equal M;

@ standard errors are computed using the negative inverse of the
Hessian

o if the ——robust flag is given, a "sandwich" estimator for
standard errors are calculated

@ if you wish to construct a likelihood ratio test, this is easily
done by estimating both the full model and the null model
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Maximum Likelihood of an Interval Regression Model

An Example for intreg

nulldata 100

# generate artificial data

set seed 201449

X = normal()

epsilon = 0.2*normal()

ystar = 1 + x + epsilon
lo_bound = floor(ystar)

hi_bound = ceil(ystar)

# run the interval model

intreg lo_bound hi_bound const x
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Maximum Likelihood of an Interval Regression Model

intreg Output

Model 1: Interval estimates, using observations 1-100
Lower limit: lo_bound, Upper limit: hi_bound

coefficient std. error z p-value
const 0.977619 0.0360159  27.14  2.97e-162 ***
x 0.993708 0.0375009  26.50  1.02e-154 ***
Chi-square(1) 702.1575  p-value 1.0e-154
Log-likelihood -40.45572  Akaike criterion 86.91144
Schwarz criterion  94.72695 Hannan-Quinn 90.07452

sigma = 0.225354

Left-unbounded observations: 0
Right-unbounded observations: 0
Bounded observations: 100

Point observations: 0

Test for normality of residual -
Null hypothesis: error is normally distributed
Test statistic: Chi-square(2) = 27.391
with p-value = 1.1275e-06
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Summary

e gretl allows for ML estimation of the Tobit estimation

@ the Tobit model identifies how each control affects both the
probability of not censoring and the expectation of the
dependent variable given that it is observed

@ interval regression by ML can also be conducted in gretl
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