Testing Hypothesis after Probit Estimation
Quantitative Microeconomics

R. Mora

Department of Economics
Universidad Carlos III de Madrid
1. Introduction

2. Exclusion Restrictions

3. Linear Hypothesis
The Probit Model and ML Estimation

The Probit Model

- $U_m = \beta_m x_m + \epsilon_m$
- $U_h = \beta_h x_h + \epsilon_h$
- $\epsilon_h, \epsilon_m \sim N(0, \Sigma)$ such that $\epsilon \sim N(0, 1)$
- $Pr(work = 1) = \Phi(\beta x)$ where Φ is the cdf of the standard normal

$\hat{\beta}^{ML} = \arg \max \sum_i \{work_i \log(\Phi(\beta x_i)) + (1 - work_i) \log(1 - \Phi(\beta x_i))\}$

- in gretl, a quasi-Newton algorithm is used (the BFGS algorithm)
under general conditions, the MLE is consistent, asymptotically normal, and asymptotically efficient

- we can construct (asymptotic) t tests and confidence intervals (just as with OLS, 2SLS, and IV)
- exclusion restrictions
 - the Lagrange multiplier requires estimating model under the null
 - the Wald test requires estimation of only the unrestricted model
 - the likelihood ratio (LR) test requires estimation of both models
The Likelihood Ratio Test

The LR test

- it is based on the difference in loglikelihood functions
- as with the F tests in linear regression, restricting models leads to no-larger loglikelihoods

$$LR = 2(l_{ur} - l_r) \xrightarrow{a} \chi_q$$

where q is the number of restrictions
Basic Commands in gretl for Probit Estimation

- `probit`: computes Maximum Likelihood probit estimation
- `omit/add`: LR or Wald tests for the joint significance
- `$yhat`: estimates probabilities
- `$lnl`: returns the log-likelihood for the last estimated model
- `logit`: computes Maximum Likelihood logit estimation

- in this Session, we are going to learn how to use omit, add, and `$lnl`
Example: Simulated Data

The Probit Model

- \(U_m = 0.3 + 0.05 \times \text{educ} + 0.5 \times \text{kids} + \varepsilon_m \)
- \(U_h = 0.8 - 0.02 \times \text{educ} + 2 \times \text{kids} + \varepsilon_h \)
- \(\varepsilon_h, \varepsilon_m \sim N(0, \Sigma) \) such that \(\varepsilon \sim N(0, 1) \)

- Education brings utility if you work, dissutility if you don’t
- Having a kid brings more utility if you don’t work
- \(\beta x = -0.5 + 0.07 \times \text{educ} - 1.5 \times \text{kids} \)
Convergence achieved after 6 iterations

Model 1: Probit, using observations 1-5000
Dependent variable: work

<table>
<thead>
<tr>
<th>coefficient</th>
<th>std. error</th>
<th>t-ratio</th>
<th>slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>-0.434462</td>
<td>0.0812490</td>
<td>-5.347</td>
</tr>
<tr>
<td>educ</td>
<td>0.0659247</td>
<td>0.00576068</td>
<td>11.44</td>
</tr>
<tr>
<td>kids</td>
<td>-1.47598</td>
<td>0.0407604</td>
<td>-36.21</td>
</tr>
</tbody>
</table>

Mean dependent var 0.366800 S.D. dependent var 0.364545
McFadden R-squared 0.233290 Adjusted R-squared 0.232378
Log-likelihood -2519.525 Akaike criterion 5045.049
Schwarz criterion 5064.601 Hannan-Quinn 5051.902

Number of cases 'correctly predicted' = 3859 (77.2%)
f(beta'x) at mean of independent vars = 0.365
Likelihood ratio test: Chi-square(2) = 1533.26 [0.0000]

Predicted 0 1
Actual 0 2495 671
1 470 1364
omit varlist —wald —quiet

- `varlist` is a subset of controls in the last model estimated.
- It gives the likelihood-ratio test for the joint significance of the variables in `varlist`.
- If the `—wald` option is given, the statistic is an asymptotic Wald chi-square value based on the covariance matrix of the original model.
- Using the `—quiet` option:
 - Only the result of the test is printed.
 - The restricted model does not become the last estimated model in gretl’s memory (for access to `$coeff`, `$yhat`, `$uhat`, and `$lnl`).
Example: the LR test

```bash
omit educ kids --quiet

  Null hypothesis: the regression parameters are zero for the variables educ, kids

  Likelihood ratio test:
    Chi-square(2) = 1533.26, with p-value = 0
```
Example: the Wald test

Null hypothesis: the regression parameters are zero for the variables educ, kids
Asymptotic test statistic:
Wald chi-square(2) = 1362.14, p-value = 1.636e-2
F-form: F(2, 4) ≠ 681.072, p-value = 2.71422e-262
add `varlist` --quiet

? probit work const
Convergence achieved after 4 iterations

Model 2: Probit, using observations 1-5000
Dependent variable: work

<table>
<thead>
<tr>
<th>coefficient</th>
<th>std. error</th>
<th>z</th>
<th>slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>-0.340341</td>
<td>0.0181027</td>
<td>-18.80</td>
</tr>
</tbody>
</table>

Mean dependent var 0.366800 S.D. dependent var 0.376494
McFadden R-squared 0.000000 Adjusted R-squared NA
Log-likelihood -3286.153 Akaike criterion 6574.306
Schwarz criterion 6580.823 Hannan-Quinn 6576.590

Number of cases 'correctly predicted' = 3166 (63.3%)
f(beta'x) at mean of independent vars = 0.376

Predicted
 0 1
Actual 0 3166 0
 1 1834 0

? add educ kids --quiet

Null hypothesis: the regression parameters are zero for the variables educ, kids

Asymptotic test statistic:
 Wald chi-square(2) = 1362.14, with p-value = 1.63698e-296
 F-form: F(2, 4997) = 681.072, with p-value = 2.71422e-262
since we can recover the log-likelihood, it is possible to compute tailor-made likelihood ratio tests

\[\beta_x = -0.5 + 0.07 \cdot educ - 1.5 \cdot kids \]

- estimate the unrestricted model and store the log-likelihood, \(l_{ur} \)
- estimate the restricted model and store the log-likelihood, \(l_r \)
- compute the likelihood ratio, \(LR = 2 \cdot (l_{ur} - l_r) \)
- compute its asymptotic \(p \)-value under the null: \(\Pr(\chi^2_1 > LR) \)
Testing Linear Hypothesis in gretl

- $\ln l$: returns the log-likelihood for the last estimated model
- $pvalue(c[,\ argument,...],value)$: Returns $Pr(X > x)$, where
 - the distribution X is determined by the character c
 - required parameter(s) for X are set with $argument(...)$
 - x is determined by $value$

Examples

- $p1 = pvalue(z, 2.2)$ \hspace{10pt} # z: standard normal
- $p2 = pvalue(X, 3, 5.67)$ \hspace{10pt} # X: chi-square
- $p2 = pvalue(F, 3, 30, 5.67)$ \hspace{10pt} # F: Snedecor’s F
Example: $H_0 : 2 \ast \beta_{educ} = -\beta_{kids}$

Unrestricted model: $\beta x = \beta_0 + \beta_{educ} \ast educ + \beta_{kids} \ast kids$

Restricted model: $\beta x = \beta_0 + \beta_{educ} \ast (educ - 2 \ast kids)$

```plaintext
outfile --write null
# estimating unrestricted model and storing loglikelihood
probit work const educ kids --quiet
scalar lur= $lnl$

# estimating restricted model and storing loglikelihood
genr x=educ-2*kids
probit work const x --quiet
scalar lr= $lnl$

# computing the LR statistic and p-value
scalar LR=2*(lur-lr)
scalar pval = pvalue(X, 1, LR)

# printout
outfile --close
printf "\nLikelihood Ratio test\nH0: 2*beta_educ+beta_kids=0\nLR%.8g p-value %.8g,\n", LR, pval
```

R. Mora Testing Hypothesis with Probit
Example's Output

Likelihood Ratio test
H0: 2*beta_educ+beta_kids=0
LR 1139.6918 p-value 7.8025612e-250
gretl allows for testing exclusion restrictions after probit estimation

the likelihood ratio and the wald tests are available

it is not difficult to test homogeneous linear hypothesis with a little bit of programming