Probit Estimation Quantitative Microeconomics

R. Mora

Department of Economics Universidad Carlos III de Madrid

Outline

2 The Loglikelihood

The Random Utility Model

•
$$U_m = \beta_m x_m + \varepsilon_m$$

•
$$U_h = \beta_h x_h + \varepsilon_h$$

\uparrow

$$eta_m x_m + arepsilon_m > eta_h x_h + arepsilon_h \Leftrightarrow$$
 work $= 1$

\uparrow

$\beta x + \varepsilon > 0 \Leftrightarrow work = 1$

where $\varepsilon = \varepsilon_m - \varepsilon_h$ (the unobserved net utility from participation) and $\beta x = \beta_m x_m - \beta_h x_h$ (the index function)

The Probit Assumption

• The econometrician only observes work, x_m , and x_h

Probit Assumption: $\varepsilon_h, \varepsilon_m \sim N(0, \Sigma)$

•
$$\varepsilon \equiv \varepsilon_m - \varepsilon_h | x \sim N(0, \sigma^2)$$

•
$$Pr(work = 1) = Pr(\varepsilon > -\beta x) = Pr(\varepsilon \le \beta x)$$

•
$$Pr(work = 1) = Pr\left(\frac{\varepsilon}{\sigma} \le \frac{\beta x}{\sigma}\right)$$

• $Pr(work = 1) = \Phi\left(\frac{\beta}{\sigma}x\right)$ where Φ is the cdf of the standard normal

Observability of σ

eta and σ are observationally equivalent to $eta^*=keta$ and $\sigma^*=k\sigma$

$$\Phi\left(\frac{\beta^*}{\sigma^*}x\right) = \Phi\left(\frac{k\beta}{k\sigma}x\right) = \Phi\left(\frac{\beta}{\sigma}x\right), k \neq 0$$

- ullet an infinite number of pairs (eta^*,σ^*) give the same likelihood
- ML identification conditions are violated

identification assumption: $\sigma = 1$ (hence $\varepsilon \sim N(0,1)$)

•
$$Pr(work = 1) = \Phi(\beta x)$$

Interpretation of the Slopes and Marginal Effects

when the control x_j appears in both utilities U_m and U_h ...

• only the net effect on the index function, $\beta_{mj}-\beta_{hj}$, is identified

normality (nonlinearity) assumption

- "net slope" $\beta_{mj} \beta_{hj}$ captures the marginal effect on index function βx of an increase of one unit of control x_j
- the marginal effect on the probability of participation is more complex
- if x_j is continuous, $\frac{\partial Pr(work=1)}{\partial x_j} = \phi(\beta x)\beta_j$
- if x_j is discrete, $\Delta Pr(work = 1) = \Phi(\beta x_1) \Phi(\beta x_0)$ where x_1 is the controls with the final value for x_j and x_0 is the controls with the initial value for x_j

A Simple Example

•
$$U_m = \beta_m^0 + \beta_m^e educ + \beta_m^k kids + \varepsilon_m$$
 with $\varepsilon_m \sim N(0, \sigma_m^2)$

•
$$U_h = \beta_h^0 + \beta_h^e educ + \beta_e^k kids + \varepsilon_h$$
 with $\varepsilon_h \sim N(0, \sigma_h^2)$

• cov
$$(\varepsilon_m, \varepsilon_h) = \sigma_{m,h}$$

Probit Assumption: $\varepsilon_m - \varepsilon_h | x \sim N(0, 1)$

•
$$Pr(work = 1) = \Phi(\beta_0 + \beta_e educ + \beta_k kids)$$

•
$$\beta_0 = \beta_m^0 - \beta_h^0$$

•
$$\beta_e = \beta_m^e - \beta_h^e$$

•
$$\beta_k = \beta_m^k - \beta_h^k$$

• var
$$(arepsilon_m-arepsilon_h)=\sigma_m^2+\sigma_h^2-2\sigma_{m,h}=1$$

A Graphical Interpretation

The probability to participate is a nonlinear function of the index function $\beta_0 + \beta_e educ + \beta_k kids$

R. Mora Probit Estimation

The Density

Assumption: iid random sample

- ullet let the true value be eta_0
- then, under the Probit model

$$Pr(work | x) = \begin{cases} \Phi(\beta_0 x) \text{ if } work = 1\\ 1 - \Phi(\beta_0 x) \text{ if } work = 0 \end{cases}$$

The Likelihood of an Observation

- ullet the likelihood replaces in the density the true vector eta_0 with any vector eta
- then, the likelihood for individual *i* takes the form

$$L_i(\beta) = \begin{cases} \Phi(\beta x_i) \text{ if } work_i = 1\\ 1 - \Phi(\beta x_i) \text{ if } work_i = 0 \end{cases}$$

o, more conveniently,

$$L_i(\beta) = \left[\Phi(\beta x_i)\right]^{work_i} \left[1 - \Phi(\beta x_i)\right]^{1 - work_i}$$

The Loglikelihood

• first, we take the logs

$$l_i(\beta) = work_i \log(\Phi(\beta x_i)) + (1 - work_i) \log(1 - \Phi(\beta x_i))$$

• then we compute the likelihood for the entire iid sample

$$l(\beta) = \sum_{i=1}^{n} l_i(\beta)$$

hence

$$I(\beta) = \sum_{i} \{ work_i \log(\Phi(\beta x_i)) + (1 - work_i)) \log(1 - \Phi(\beta x_i)) \}$$

ML Estimation

Definition

ullet the MLE is the vector \hat{eta}^{ML} such that

$$\hat{eta}^{ML} = rgmax / (eta) \ _eta$$

- because of the nonlinear nature of the maximization problem, there are not explicit formulas for the probit ML estimates
- instead, numerical optimization is used, and, usually, only a few iterations are needed
- in gret1, a quasi-Newton algorithm is used (the BFGS algorithm)

A Perfect Classifier Control

suppose that dummy variable D_i perfectly predicts work_i in the sample in the sense that work_i = 1 ⇔ D_i = 1

• if
$$\beta x = \beta_0 + \beta_D D$$
, then $\beta x = \begin{cases} \beta_0 + \beta_D & \text{if work} = 1 \\ \beta_0 & \text{if work} = 0 \end{cases}$

• and the log-likelihood function is increasing in eta_D :

$$I(\beta) = \sum_{i} \{ work_i \log(\Phi(\beta_0 + \beta_D)) + (1 - work_i)) \log(1 - \Phi(\beta_0)) \}$$

• hence, there cannot be a maximum likelihood estimator

The Perfect Prediction Problem

- more generally, suppose that vector $\hat{\beta}$ perfectly predicts $work_i$ in the sample in the sense that for a given scalar k, $\tilde{\beta}x_i > k$ if and only if $work_i = 1$
- then the same thing is true for any multiple of \widetilde{eta} and the log-likelihood function will have no maximum
- this may be due to several reasons
 - one control may be a perfect classifier: drop it
 - the model may be trivially misspecified (like predicting participation among working individuals)
 - the sample may simply be not large enough

Asymptotic Properties and Testing

under general conditions, the MLE is consistent, asymptotically normal, and asymptotically efficient

- we can construct (asymptotic) *t* tests and confidence intervals (just as with OLS, 2SLS, and IV)
- exclusion restrictions (por ejemplo, $H_0: \beta_j = 0$ and $\beta_k = 0$)
 - the Lagrange multiplier test only requires estimating the model under the null
 - the Wald test requires estimation of only the unrestricted model
 - the likelihood ratio (LR) test requires estimation of both models

The Likelihood Ratio Test

Nested Hypothesis

- it is based on the difference in loglikelihood functions under the null and under the alternative
- restricting models cannot increase loglikelihoods

$$LR = 2\left(l_{ur}\left(\hat{\beta}_{ur}^{ML}\right) - l_r\left(\hat{\beta}_r^{ML}\right)\right) \stackrel{a}{\to} \chi_q$$

where q is the number of restrictions

Summary

- not all parameters of the RUM can be estimated
- the Probit model identifies how each control affects the probability of participation
- ML estimation requires numerical methods
- under general conditions, ML estimates are consistent, asymptotically normal, and asymptotically efficient
- significance tests and general restrictions tests are easy to carry out with the Probit model