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General Approaches to Parameter Estimation

There are estimation criteria that produce estimators with good

properties

Least Squares (OLS or GLS)

Method of Moments (OLS, GLS, and IV):

θ = g (E (Y ))⇒ θ̂ = g (EN [yi ])

Maximum Likelihood (ML)

It chooses the vector θ̂ which makes the estimation of the

probability of the sample most likely

R. Mora QMicro: Max. Likelihood Estimation



Motivation
De�nition

The Linear Regression Model
Computation

Asymptotic Results for ML
Summary

Basic Setup

Let {y1,y2, . . . ,yN} be an iid sample from the population with

density f (Y ;θ0). We aim to estimate θ0

Because of the iid assumption, the joint distribution of

{y1,y2, . . . ,yN} is simply the product of the densities:

f (y1,y2, . . . ,yN ;θ0) = f (y1;θ0)f (y2;θ0)...f (yN ;θ0)

The Likelihood Function is the function obtained for a given

sample after replacing true θ0 by any θ

L(θ) = f (y1;θ)f (y2;θ)...f (yN ;θ)

L(θ) is a random variable because it depends on the sample

R. Mora QMicro: Max. Likelihood Estimation
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De�nition

The maximum likelihood estimator of θ0, θ̂ML, is the value of θ

that maximizes the likelihood function L(θ)

It is more convenient to work with the logarithm of the

likelihood function

l (θ) = ∑
N
i=1 log (f (yi ;θ))

Since the logarithmiic transform is monotonic, θ̂ML also

maximizes l (θ)

R. Mora QMicro: Max. Likelihood Estimation
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Example: Bernoulli (1/3)

Assume that Y is Bernoulli:

{
1 with probability p0
0 with probability 1−p0

Likelihood for observation i :

{
p0 if yi = 1

1−p0 if yi = 0

Let n1 be the number of observations with 1. Then, under iid

sampling

L(p) = pn1(1−p)n−n1

We have a likelihood for each sample

With {0,1,0,0,0}⇒ L(p) = p (1−p)4

With {1,0,0,1,1}⇒ L(p) = p3 (1−p)²

R. Mora QMicro: Max. Likelihood Estimation
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Example: Bernoulli (2/3)
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With {0,1,0,0,0}⇒ p̂ = 0.2

With {1,0,0,1,1}⇒ p̂ML = 0.6
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Example: Bernoulli (3/3)

The maximum likelihood estimator is the value that maximizes

L(p) = pn1(1−p)n−n1

The same p̂ML maximizes the logarithm of the likelihood

function

l(p) = n1log(p) + (n−n1)log(1−p)

∂ l(p)
∂p

= 0⇔ n1
p̂ML = n−n1

1−p̂ML⇒ p̂ML = n1
n

With {0,1,0,0,0}⇒ p̂ML = 1
5

= 0.2

With {1,0,0,1,1}⇒⇒ p̂ML = 3
5

= 0.6
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Basic Setup

Let {y1,y2, . . . ,yN} be an iid sample from y |x ∼ N
(
β0x ,σ

2
0

)
.

We aim to estimate θ0 =
(
β0,σ

2
0

)
Because of the iid assumption, the joint distribution of

{y1,y2, . . . ,yN} is simply the product of the densities:

f (y1,y2, . . . ,yN |x1, ...,xN ;θ0) =
f (y1|x1;θ0)f (y2|x2;θ0)...f (yN |xN ;θ0)

Note that y |x ∼ N
(
β0x ,σ

2
0

)
⇒ y −β0x ≡ ε ∼ N

(
0,σ2

0

)
. This

implies that

fy |x (yi |xi ;θ0) = fε (yi −βxi ;θ0)

R. Mora QMicro: Max. Likelihood Estimation
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Density of the Error Term

We have that ε ∼ N
(
0,σ2

0

)
, so what is its density fε (z ;θ0)?

1 ε ∼ N
(
0,σ2

0

)
→ ε

σ0
∼ N (0,1)

2 CDFε (z)≡ Pr (ε ≤ z) = Pr
(

ε

σ0
≤ z

σ0

)
3 Hence, CDFε (z) = Φ

(
z

σ0

)
4 The density of a continuous random variable is the �rst

derivative of its CDF:

fε (z ;θ0) =
(

1
σ0

)
φ

(
z

σ0

)
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Density of the Sample

Since

fε (z ;θ0) =
(

1
σ0

)
φ

(
z

σ0

)
and

fy |x (yi |xi ;θ0) = fε (yi −βxi ;θ0)

and

f (y1,y2, . . . ,yN |x1, ...,xN ;θ0) = f (y1|x1;θ0)f (y2|x2;θ0)...f (yN |xN ;θ0)

then we have that

f (y1,y2, . . . ,yN |x1, ...,xN ;θ0) =
N

∏
i=1

{(
1

σ0

)
φ

(
yi −β0xi

σ0

)}
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The Log-likelihood function

The likelihood replaces the actual values of the parameters for

real variables:

L(β ,σ) =
N

∏
i=1

{(
1

σ

)
φ

(
yi −βxi

σ

)}
taking the log makes the problem easier

log (L(β ,σ)) =
N

∑
i=1

{
log

(
1

σ

)
+ log

[
φ

(
yi −βxi

σ

)]}
and given that φ

(
yi−βxi

σ

)
= (2π)−

1
2 exp

[
−
(
yi−βxi

σ

)2]
we

have that

log (L(β ,σ)) = Nlog

(
1

2πσ2

) 1
2

−
N

∑
i=1

(
yi −βxi

σ

)2
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The ML Estimator: FOC

With respect to β :

2

σ̂²

N

∑
i=1

xi

(
yi − β̂xi

)
= 0

which implies
N

∑
i=1

xi

(
yi − β̂xi

)
= 0

With respect to σ , this implies

σ̂² =
1

N

N

∑
i=1

(
yi − β̂xi

)2
MLE for β̂ is exactly the same estimator as OLS;σ̂2 = N−1

N
s2

is biased, but the bias disappears as N increases
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Computing the MLE

ML estimates are often easy to compute, as in the two

previous examples

Sometimes, however, there is no algebraic solution to the

maximization problem

It is then necessary to use some sort of numerical

maximization procedure

R. Mora QMicro: Max. Likelihood Estimation
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Numerical Maximization Procedures

Newton's method

Start with an initial value θ̂0

At any iteration, θ̂ j+1 = θ̂ j −H−1g

g is the �rst derivative of the likelihood (i.e. the gradient)
H is the second derivative (the Hessian)

Check if there is convergence

Which ∆θ̂ increases the most the quadratic Taylor

approximation of L
(

θ̂ + ∆θ̂

)
,

L
(

θ̂ + ∆θ̂

)
' L

(
θ̂

)
+g

(
θ̂

)
∆θ̂ + 1

2
H
(

θ̂

)
∆θ̂2?

R. Mora QMicro: Max. Likelihood Estimation
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Quasi-Newton Methods

Newton's Method will not work well when the Hessian is not

negative de�nite.

In such cases, one popular way to obtain the MLE is to replace

the Hessian by a matrix which is always negative de�nite

These approaches are referred to as quasi-Newton algorithms

gretl uses one of them: the BFGS algorithm (Broyden,

Fletcher, Goldfarb and Shanno)

R. Mora QMicro: Max. Likelihood Estimation



Motivation
De�nition

The Linear Regression Model
Computation

Asymptotic Results for ML
Summary

Consistency

Assumptions

1 Finite-sample identi�cation: l(θ) takes di�erent values for

di�erent θ

2 Sampling: a law of large numbers is satis�ed by 1
n

Σi li (θ̂)

3 Asymptotic identi�cation: max l(θ) provides a unique way

to determine the parameter in the limit as the sample size

tends to in�nity.

Under these conditions, the ML estimator is consistent

plim
(

θ̂ML
)

= θ0

R. Mora QMicro: Max. Likelihood Estimation
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Identi�cación

These are the crucial assumptions to exploit the fact that the

expected maximum likelihood attains its maximum at the true

value θ0

If these conditions did not hold, there would be some value θ1

such that θ0 and θ1 generate an identical distribution of the

observable data

Then we wouldn't be able to distinguish between these two

parameters even with an in�nite amount of data

We then say that these parameters are observationally

equivalent and that the model is not identi�ed

R. Mora QMicro: Max. Likelihood Estimation
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Asymptotic Normality

Assumptions

1 Consistency

2 l(θ) is di�erentiable and attains an interior maximum

3 A CLT can be applied to the gradient

Under these conditions the ML estimator is asymptotically

normal

n
1/2
(

θ̂ −θ

)
→ N (0,Σ)) as n→ ∞

where Σ =−
(
plim 1

n ∑Hi

)−1
R. Mora QMicro: Max. Likelihood Estimation
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Asymptotic E�ciency and Variance Estimation

If l(θ) is di�erentiable and attains an interior maximum

the MLE must be at least as asymptotically e�cient as any

other consistent estimator that is asymptotically unbiased

Consistent estimators of the Varianze-Covariance Matrix

empirical hessian: varH(θ̂) = =

[
1
n ∑H−1i (θ̂)

]−1
BHHH, varBHHH(θ̂) =

[(
1
n ∑gi (θ̂)

)T (
1
n ∑gi (θ̂)

)]−1
the sandwich estimator: valid even if the model is misspeci�ed

R. Mora QMicro: Max. Likelihood Estimation
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Summary

ML estimates are the values which maximize the likelihood

function

under general assumptions, ML is consistent, asymptotically

normal, and asymptotically e�cient
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