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Asymptotic Results for OLS

Classical Assumptions

Gauss-Markov Assumptions:
o Al: Linearity: y = B+ Pixi + ...+ Brxx + v
e A2: Random Sampling

@ A3: Conditional Mean Independence:
Ely [x] = Bo+ Bix1 + ... + Brxk
@ A4: Invertibility of Variance-covariance Matrix

@ A5: Homoskedasticity: Var[v|x] = o2

o A6: Normality: y|x ~ N(Bo + Bix1 + ... + Bixk, 62)
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Asymptotic Results for OLS

Asymptotic Properties for OLS (1/2)

Consistency Under Gauss-Markov Al-A4, plim(ﬁj) =pB;

Asymptotic normality (CLT): strong version
@ Under Gauss-Markov A.1 to A.5:

nl/zﬁff/;afj — N(0,1)as n — oo where a;2 = plim (1 ¥, rés;?)

Asymptotic efficiency

@ Under Gauss-Markov A.1 to A5, OLS is asymptotically
efficient in the class of linear estimators
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Asymptotic Results for OLS

Asymptotic Properties for OLS (2/2)

Asymptotic normality (CLT): weak version
@ Under A.1 to A.4:

n'/? <[§J —[3j> — N (0, n*Avar(Bj)) asn— oo

@ but OLS is not longer asymptotically efficient

@ From the CLTs

55,
= Db
se( j)

where p/lm(se(BJ)) Avaf(ﬁj)

— N(0,1) as n — oo
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IV Estimation

Suppose that A3 does not hold

o y = fo+ Pix+u but cov(x,u) #0
o OLS is such that cdvy(x,y — fo — P1x) = 0— {ﬁo,ﬁl} is
consistent with a false property

Example: wages = By + B1education+ u

@ those with higher ability are more likely to go to college and
have higher wages: cov(educ,u) #0

° Bl would overestimate the effect of going to college by the
effect of ability on education

@ we want to use in the sample a property which is true for the
population
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IV Estimation

Instruments

y=PBo+Pix+u

cov(x,u) #0

@ An instrument z is a variable whose influence on the
dependent variable is only via a control
e z is relevant in the sense that it correlates with controls:
cov(x,z) #0
e z is exogenous in the sense that controls capture all its effects
on the dependent variable: cov(u,z) =0

@ each exogenous control is an instrument of itself
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|\ Estimation: The Basic Idea

y=PBo+Bix+u
cov(x,u) # 0 (OLS is inconsistent)

cov(x,z) #0 (z is relevant)

cov(z,u) =0 (z is exogenous)

covly.z) = Preov(x.2) = B = J

we use in the sample a property which is true for the population

gV _ covn(yizi)
1 = cbvn(xi,zi)
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IV Estimation

|\ Estimation in the General Case

yi=PBo+Pizi+Boyr+u
cov(y,u) #0

@ zjis a set of k; exogenous variables: cov(zi,u) =0

@ y» is a set of ky endogenous variables, but there is an
instrument for each endogenous variable in y, cov(zz,u) =0

o the system of k; + k> +1 linear equations

covy | zii,y1i — Bo— Brzii+ Boyzi ) =0
covy | 22, y1i — Bo — Brz1i + Poyoi ) =0
méany ()/1,' —Bo—Pizii + ﬁz)@;) =0

uniquely identifies{ VoBlY, 2”/}
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IV Estimation
tl
tl

2SLS Assumptions

@ 2SLS1: Linearity: y =B+ Bixi + ... + Bexk +v

@ 25LS2: Random Sampling

@ 2SLS3: Exogeneity: cov(u,z) =0

@ 2SLS4: Rank condition: (i) there are no perfect linear relations

among the instruments. (ii) The invertibility (relevance)
condition holds.

@ 2SLS5: Homoskedasticity: var|[v|z] = 62

R. Mora QMicro: Asymp. Properties and Simulation in gretl



IV Estimation

2SLS Large Sample Results

Under 251 51-251.54, 2SLS is consistent

Under 251 51-251.55, 2SLS is asymptotically normal and
asymptotically efficient in the class of IV estimators

Under 25L.51-251.54, 2SLS is consistent and asymptotically normal
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IV Estimation

Some Properties of 2SLS

o |V standard errors tend to be larger than OLS standard errors

@ the stronger the correlation between z and x, the smaller the
IV standard errors

@ getting non-significant results using IV may simply be a
problem of “poor instruments”
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IV Estimation

Testing after 2SLS

o t-tests: under Hy: Bj=0=t = 2 N(0,1)

@ it is possible to test for multiple ||near hypothe3|s
@ Hausman test for endogeneity Hy: OLS is consistent
@ a t-test for endogeneity:

o First step: regress y, on all z; and z, and compute residual ¥
e Second step: OLS y; on z; and y, AND ¥. Under the null, the
slope for ¥ should not be significant

@ The Sargan test tests overidentifying restrictions
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IV Estimation

A simple example: estimating a demand function

a supply and demand system of equations
@ supply function: g =1+ B°p+yx° + v°
o demand function: g = o +B9p+ ax? + u?

At equilibrium, g = q(x%,x9,u°,u?), p= p(x®,x9,u*, u?)

o Note that cov(p,u?) # 0 (OLS is inconsistent)
e “identification” of B? using a “supply shifter”

o cov(x®,p) # O(relevance) (because p is a function of x*)
o cov(x®,u?) = O(exogeneity) (otherwise, x* is not really a
“supply shifter")
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IV Estimation

A Graphical Interpretation of Identification of Demand

A supply shifter identifies the demand slope

Demand
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Simulation in gretl

A simple Monte Carlo experiment

log(wages) =10+0.05% D+ u, u~ N(0,1), D=1 with prob. 0.3
draw N realizations of D

draw N realizations of u

compute log(wages)

OLS log(wages) on D and store B{

replicate step 1 to 4 R times

©O00 00O

examine the empirical distribution of B
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Simulation in gretl

How do we draw N realizations of D and u?

A random number generator is a device designed to generate a
sequence of numbers, called pseudo-random numbers, that appear
random

@ there are two main methods:

© using a physical random phenomenon (i.e. sunspots)
@ using a computer

o the latter type are determined by a shorter initial number given
to the computer, known as “the seed”

@ controlling the seed is useful: it permits replication
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Simulation in gretl

Pseudo-random numbers of the uniform

@ many econometric packages provide pseudo-random numbers
from the uniform distribution between 0 and 1

@ uniform values between 0 and 1 can be used to generate
random numbers of any desired distribution

@ how? by passing them through the inverse cdf of the desired
distribution

generate the uniform U(0,1): u
generate the standard normal N (0,1) : z=®"1(u)

000

compute x = U+ ou
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Simulation in gretl

normal COF ——— |

iniforr / 1 normal i
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Simulation in gretl

Multivariate normal pseudo-random numbers

@ Any multivariate normal

MEHEES:1)

can be expressed as

HERESR

2
@ Ais such that [ 1 0122 ] = AAT (Cholesky decomposition)
012 O)

dHRI(BIRE)
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Random number generation in gretl

Random number generation in gretl

Commands to generate random numbers

o uniform: draws a series of iid values from the uniform
distribution

@ normal: draws from the uniform distribution

@ genpois: draws from the poisson distribution

e randgen: all purpuse random number generator

We are going to predominantly use uniform and normal
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Random number generation in gretl

uniform(#a,#b)

@ generates values from the uniform in the interval (a, b)-by
default, in the interval (0,1)

@ nulldata 500 # "blank" data set with 500 obs.
@ set seed 2703 # sets the seed for replicability

@ genr x = 100 * uniform(-1,1)
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Random number generation in gretl

normal(#u,#o)

@ generates values from the normal N (u,cz)—by default, the ’
N(0,1)

@ genr z = normal(5,2)

Example 2: conditional normal distribution

@ genr x1 = 20+5*uniform(-1,1)+1.3*normal()
e genr u = uniform(-1,1)+3*normal()
@ genry =2+ 3 *x1 4+ 3*u
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Example: Covariance Estimation

Sample Covariance of Any Two Variables

@ Suppose that we have two random variables, x; and x», with
the following properties

X1 0 1 0.5
~N
@ Suppose that we estimate the covariance with samples of size

N = 5,50,500, 5000

e Can we “estimate” the statistical properties of the sample
covariance of these two variables for each sample size?

@ Can we understand how the asymptotic properties are related
with these small sample properties?
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Example: Covariance Estimation

Estructura

Objetive: simulate a bivariate normal and estimate the small
sample properties of the sample covariance

O Inicialization: sample size, seed, Cholesky
@ Within the loop:

@ Simulation
@ Computation of the sample covariance for different samples
© Store results

© Recovery of results
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Example: Covariance Estimation

The gretl Script

§ wxxkkaxkkxkkkxk BefOre the LOOp %%k &k k& kkk %k kxxkkx
nulldata 5000

set seed 547

matrix S = {1,0.5;0.5,1}

matrix A = cholesky(S)

#*xxx%%x open a loop, to be repeated R=500 times ***xx¥kxxx
loop 500 --progressive --quiet

genr ul normal ()
genr u2 normal()
genr x1 A[1l,1]*ul+A[1,2]*u2

genr x2 = A[2,1]*ul+A[2,2]*u2
smpl 5 --random

genr cov5 = cov(xl,x2)

smpl full

smpl 50 --random

genr cov50 = cov(xl,x2)

smpl full

smpl 500 --random

genr cov500 = cov(xl,x2)

smpl full

genr cov5000 = cov(xl,x2)

store myfirstMC.gtd cov5 cov50 cov500 cov5000
endloop

JrRAxxRAXFRAX & OPEN thE FESULLS * 4k k4 kkk sk kkk k% kk Xk k X ok

open myfirstMC.gtd
summary cov* --simple




, s t t1
Example: Covariance Estimation

The Monte Carlo Results & the LLN

Read datafile /home/ricmora/AAOFICIN/CURSOS/MICCUA/materiales/Sesién
3_Tema 1_2_ Propiedades Asintéticas y Simulacidén en gretl/myfirstMC.gtd
periodicity: 1, maxobs: 500

observations range: 1-500

Listing 5 variables:
0) const 1) covb 2) cov50 3) cov500 4) cov5000

? summary cov* --simple

Summary statistics, using the observations 1 - 500

Mean Minimum Maximum Std. Dev.
cov5 0.50421 -0.94961 4.0369 0.56057
cov50 0.49751 0.15717 1.0123 0.15393
cov500 0.50006 0.37126 0.63924 0.047988
cov5000 0.50061 0.45830 0.54222 0.015756
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Example: Covariance Estimation

@ The average is very similar across different sample sizes, and it
is quite close to the population covariance. Why?

@ The standard deviation gets smaller and smaller as the sample
size increases. Why?
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Example: Covariance Estimation

The Monte Carlo Results & the CLT
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Summary

under classical assumptions, OLS is consistent and
asymptotically normal

when a control is likely correlated with the error term, then
OLS is inconsistent

under general assumptions, 25SLS is consistent and
asymptotically normal

if we want to estimate the price elasticity in a demand
equation, we need a “supply shifter”

within a basic Monte Carlo algorithm we need a random
number generator. In gretl, this is very easy
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