Large Sample Properties (W App. C3) Small Sample Properties and Simulation Monte Carlo Algorithms (DP 3.8) Summary

Large Sample Properties & Simulation Quantitative Microeconomics

R. Mora

Department of Economics
Universidad Carlos III de Madrid

Outline

- 1 Large Sample Properties (W App. C3)
- 2 Small Sample Properties and Simulation
- 3 Monte Carlo Algorithms (DP 3.8)

The Notion of Large Sample Properties

- large sample properties look at how an estimate $\hat{\theta}$ of a parameter θ "behave" as the sample size gets larger and larger:
 - **1** how far is $\hat{\theta}$ from the true parameter θ as $n \to \infty$?
 - 2 how does the distribution of $\hat{\theta}$ look as $n \to \infty$?
- accordingly, we look at two notions of "large sample behavior":
 - convergence in probability
 - convergence in distribution

Convergence in Probability

Definition

As the sample size grows, any arbitrarily small difference between $\hat{\theta}$ and θ becomes arbitrarily unlikely

- ullet Technically: $\Pr\left(\left|\hat{ heta}- heta
 ight|>arepsilon
 ight) o 0$ as $n o\infty$
- ullet heta is probability limit of $\hat{ heta}$
- $oldsymbol{\hat{ heta}}$ converges in probability to $oldsymbol{ heta}$
- $plim(\hat{\theta}) = \theta$

A Graphical Interpretation of Consistency

Source: Wooldrigde (2003)

The Law of Large Numbers: Some Basic Info

- in its simplest version, first proved by Bernoulli in 1713: it took him 20 years to get the actual proof
- it essentially states that the average converges in probability to the expected value
- the LLN is important because it "guarantees" stable long-term results for random events

A Law of Large Numbers

For any random variable y with an expected value μ define the average of a sample of size n as \overline{y}_n . Then

$$plim(\overline{y}_n) = \mu$$

Example 1

$$plim(c\hat{ov}_n(y,x)) = cov(y,x)$$

Example 2

$$plim(v\hat{ar}_n(x)) = var(x)$$

plim Properties

Continuous Mapping Theorem

For every continuous function $g(\cdot)$ and random variable x:

$$plim(g(x)) = g(plim(x))$$

Example
$$1plim(x + y) = plim(x) + plim(y)$$

Example
$$2plim\left(\frac{x}{y}\right) = \frac{plim(x)}{plim(y)}$$
 if $plim(y) \neq 0$

Example 1: The Fundamental Theorem of Statistics

- Suppose that X is a random variable with CDF F(X) and that we obtain a random sample of size n where typical element x_i is an independent realization of X
- The **empirical distribution** is the discrete distribution that puts a weight of $\frac{1}{n}$ at each of the x_i , i=1,...,n
- The EDF is the distribution function of the empirical distribution:

$$\hat{F}(x) \equiv \frac{1}{n} \sum_{i=1}^{n} I(x_i \le x)$$

where $I(\cdot)$ is the indicator function.

The Fundamental Theorem of Statistics

$$plim \hat{F}(x) = F(x)$$

EDFs for three samples of sizes 20, 100, and 500 drawn from three normal distributions, each with variance 1 and with means 0, 2, and 4, respectively

Example 2: OLS under Classical Assumptions

Gauss-Markov Assumptions

- A1: Linearity: $y = \beta + \beta_1 x_1 + ... + \beta_k x_k + v$
- A2: Random Sampling
- A3: Conditional Mean Independence:

$$E[y | \mathbf{x}] = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

- A4: Invertibility of Variance-covariance Matrix
- A5: Homoskedasticity: $Var[v | \mathbf{x}] = \sigma^2$

Normality

• A6: Normality: $y | \mathbf{x} \sim N(\beta_0 + \beta_1 x_1 + ... + \beta_k x_k, \sigma^2)$

OLS Consistency

Theorem

Under Gauss-Markov A1-A4, OLS is consistent

Example: $wages = \beta_0 + \beta_1 educ + u$ with cov(educ, u) = 0

- $\hat{\beta}_1 = \beta_1 + \frac{\hat{cov}(educ_i, u_i)}{\hat{var}(educ_i)}$
- $plim\left(\hat{eta}_1
 ight) = plim(eta_1) + rac{plim(c\hat{o}v(educ_i,u_i))}{plim(v\hat{a}r(educ_i))} = eta_1 + rac{cov(educ,u)}{var(educ)}$
- ullet Since $cov(educ,u)=0\Rightarrow plim\left(\hat{eta_1}
 ight)=eta_1$

An Example of Inconsistency

True Model: $wages = \beta_0 + \beta_1 educ + \beta_2 IQ + v$

- cov(educ, v) = cov(IQ, v) = 0
- $cov(educ, IQ) \neq 0, \beta_2 \neq 0$
- ullet Estimated equation by OLS: $wages = \hat{\gamma}_0 + \hat{\gamma}_1 educ + \hat{u}_{educ}$

$$\hat{\gamma}_1 = \hat{eta}_1 + \hat{eta}_2 rac{c \hat{o}v(ext{educ}, ext{IQ})}{v \hat{a}r(ext{educ})} \Rightarrow ext{plim}(\hat{\gamma}_1) = eta_1 + eta_2 rac{cov(ext{educ}, ext{IQ})}{v \hat{a}r(ext{educ})}$$

- $plim(\hat{\gamma}_1) \neq \beta_1$ if
 - intelligence is relevant: $\beta_2 \neq 0$
 - education is correlated to intelligence: $cov(educ, IQ) \neq 0$

Asymptotic Normality

Definition

As the sample size grows, the distribution of $\hat{\beta}_j$ gets arbitrarily close to the normal distribution

• Technically: $\Pr(\hat{\beta}_i \leq z) \to \Phi(z)$ as $n \to \infty$

The Central Limit Theorem: Some History

- arguably, one of the most interesesting laws in maths, the proof is astonishing simple (but I must admit that I cannot intuitively understand the result)
- the first who thought about it was a French mathematician, de Moivre, in 1733
- Pierre Simon Laplace, another French, got the simplest version right in 1812
- the Russian Aleksander Liapunov was the guy who proved the general case in 1901

Rats and the Central Limit Theorem

- go to the sewage system in Madrid
- capture 100 rats, measure their tails, standardize the measures, and compute the average times square root of 100
- now capture more rats, say 500 rats, do as before using the square root of 500 instead of the square root of 100
 - if the distribution of the second average is closer to the standard normal, that's basically it
 - otherwise, instead of 500, try with a larger number of rats, say 10000
- the point is: if you keep increasing the sample size, you will CERTAINLY get closer to the normal

Stars and the Central Limit Theorem

- look at the brightness of 100 stars
- yeah, that's it! you will CERTAINLY get as close as you want to the normal after averaging by increasing sample size
- what is remarkable about the CLT is that the random distributions of star's brightness and rat's tails have nothing to do with each other
- the crucial issue is the averaging carried out over the measures after measurement

The Central Limit Theorem

For any random variable y with an expected value μ and variance σ^2 define the average of a sample of size n as \overline{y}_n . Then

$$n^{1/2} \frac{\overline{y}_n - \mu}{\sigma} \to N(0,1)$$
as $n \to \infty$

Under Gauss-Markov A.1 to A.5

$$n^{1/2} \frac{\hat{\beta}_j - \beta_j}{\sigma/a_j} \to N(0,1) \text{ as } n \to \infty \text{ where } a_j^2 = plim\left(\frac{1}{n} \sum_i r\hat{e}s_{ji}^2\right)$$

Moreover:
$$plim(\hat{\sigma}^2) = plim(\frac{SSR}{n-k-1}) = \sigma^2$$

Asymptotic Normality for OLS Estimators

 As sample size n increases, the OLS estimators—conveniently scaled up—get as close as we want to a normal distribution

$$n^{1/2}\hat{eta}_jpprox N(eta_j,\sigma^2a_j^2)$$

- the larger the sample, the more accurate the estimates
- important: the expression for the asymptotic variance depends on the homoskedasticity assumption

The t Test

• from the CLT (and a LLN), it can also be shown that

$$t=rac{\hat{eta}_{j}-eta_{j}}{se\left(\hat{eta}_{j}
ight)}
ightarrow N\left(0,1
ight) ext{ as } n
ightarrow\infty$$

 this result can be used to test whether a coefficient is significant

Small Sample Properties

 the idea is to undertand the behavior of an estimator for a given fixed sample size n

Under Gauss-Markov A.1 to A.5 AND Normality A.6

$$\frac{\hat{\beta}_j - \beta_j}{se(\hat{\beta}_i)} \backsim t_{n-k-1}$$

• the problem is, normality is a very strong assumption

Monte Carlo Experiments: Definition and Motivation

Definition

- Monte Carlo experiments are a type of computational algorithms that rely on repeated random sampling to compute their results
- Monte Carlo methods are often used in simulating physical and mathematical systems
- Tend to be used when it is unfeasible or impossible to compute an exact result with a deterministic algorithm
- We are going to use them to generate observational data to study the behaviour of econometric techniques when samples are not infinite

Why Monte Carlo?

- the term was first used in the 1940s by physicists working on nuclear weapons in the US
- they wanted to solve a radiation problem but could not do it analytically, so they decided to model the experiment using chance
- they codenamed the project "Monte Carlo" in reference to the Monte Carlo Casino in Monaco where the uncle of one of them would borrow money to gamble
- it has been since used in many sciences
- for economists, Monte Carlo techniques are important for solving typical problems (integration, optimization) and also in games and in applied statistics

Monte Carlo in Applied Statistics

- there are two main uses of Monte Carlo in applied statistics
 - to compare and contrast competing statistics for small samples
 - to study how small sample behaviour translates into asymptotic results as samples become larger
- Monte Carlo techniques strike a nice balance
 - usually, they are more accurate than asymptotic results
 - not as time consuming to obtain as are exact tests

Monte Carlo vs. Simulation

- a simulation is a fictitious computer representation of reality
- a Monte Carlo study is a technique that can be used to solve a mathematical or statistical problem
- A Monte Carlo simulation uses repeated sampling of simulated data to determine the properties of some phenomenon

A Simple Simulation Exercise

- ullet using a computer, draw a value from a pseudo-random uniform variate from the interval [0,1]
- ② If the value is less than or equal to 0.50 designate the outcome as heads
- 3 if the value is greater than 0.50 designate the outcome as tails
 - this is a simulation of the tossing of a coin

A Simple Monte Carlo Study

the area of an irregular figure inscribed in a unit square

- draw two values from a pseudo-random uniform variate from the interval [0,1]
- ② If the point identified is within the figure, designate the outcome as "success", otherwise, as failure
- 3 repeat steps 1 and 2 many times
- the proportion of successes provides the area of the figure
 - this is using simple Monte Carlo techniques to compute a complex integral

A Simple Monte Carlo Experiment

- draw one value from a pseudo-random uniform variate from the interval [0,1]
- ② If the value is less than or equal to 0.50 designate the outcome as heads, otherwise tails
- 3 repeat steps 1 and 2 many times
- the proportion of heads is the Monte Carlo simulation of the probability of heads

Using Monte Carlo in Applied Statistics

- we assume an econometric model and simulate it may times
- from each simulated population, we can extract a sample of size n and estimate the parameter of interest
- by looking at the descriptive statistics of the estimates across all simulated realities, we "estimate" the properties of the estimator when the sample size is fixed
- by increasing *n* and doing everything again, we "estimate" how the estimator behaves when the sample size increases

A Basic algorithm for a Monte Carlo experiment

A Monte Carlo experiment for a fixed sample of size N

- assume values for the exogenous parts of the model or draw them from their respective distribution function
- ② draw a (pseudo) random sample of size N for the error terms in the statistical model from their respective probability distribution functions
- calculate the endogenous parts of the statistical model
- o calculate the value (e.g. the estimate) you are interested in
- o replicate step 1 to 4 R times
- o examine the empirical distribution of the R values

A simple Monte Carlo experiment

log(wages) = 10 + 0.05 * D + u, $u \sim N(0,1)$, D = 1 with prob. 0.3

- \bullet draw N realizations of D
- draw N realizations of u
- compute log(wages)
- OLS log(wages) on D and store $\hat{\beta}_1^r$
- replicate step 1 to 4 R times
- $oldsymbol{\mathfrak{G}}$ examine the empirical distribution of \hat{eta}_{1}^{r}

Summary

- Large sample properties tell us how an estimator behaves as the sample size becomes arbitrarily large.
- Exact small sample properties are hard to get and sometimes they require strong assumptions.
- Monte Carlo simulations are useful in applied statistics.
- We can study small sample properties of estimators.
- We can also study how large sample properties are achieved in practice.