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The Notion of Large Sample Properties

large sample properties look at how an estimate θ̂ of a
parameter θ �behave� as the sample size gets larger and larger:

1 how far is θ̂ from the true parameter θ as n→ ∞?
2 how does the distribution of θ̂ look as n→ ∞?

accordingly, we look at two notions of �large sample behavior�:

1 convergence in probability
2 convergence in distribution
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Convergence in Probability

De�nition

As the sample size grows, any arbitrarily small di�erence between θ̂

and θ becomes arbitrarily unlikely

Technically: Pr
(∣∣∣θ̂ −θ

∣∣∣> ε

)
→ 0 as n→ ∞

θ is probability limit of θ̂

θ̂ converges in probability to θ

plim(θ̂) = θ
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A Graphical Interpretation of Consistency

Source: Wooldrigde (2003)
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The Law of Large Numbers: Some Basic Info

in its simplest version, �rst proved by Bernoulli in 1713: it
took him 20 years to get the actual proof

it essentially states that the average converges in probability to
the expected value

the LLN is important because it �guarantees� stable long-term
results for random events
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A Law of Large Numbers

For any random variable y with an expected value µ de�ne the
average of a sample of size n as yn. Then

plim (yn) = µ

Example 1
plim ( ˆcovn(y ,x)) = cov(y ,x)

Example 2
plim ( ˆvarn(x)) = var(x)
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plim Properties

Continuous Mapping Theorem

For every continuous function g(·) and random variable x :

plim (g(x)) = g(plim(x))

Example 1plim(x + y) = plim(x) +plim(y)

Example 2plim
(
x
y

)
= plim(x)

plim(y) if plim(y) 6= 0
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Example 1: The Fundamental Theorem of Statistics

Suppose that X is a random variable with CDF F (X ) and that
we obtain a random sample of size n where typical element xi
is an independent realization of X

The empirical distribution is the discrete distribution that
puts a weight of 1

n
at each of the xi , i = 1, ...,n

The EDF is the distribution function of the empirical
distribution:

F̂ (x)≡ 1

n

n

∑
i=1

I (xi ≤ x)

where I (·) is the indicator function.

The Fundamental Theorem of Statistics

plim F̂ (x) = F (x)
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14\8 Hypothesis Testing in Linear Regression Models
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Figure 4.6 EDFs for several sample sizes

where the xt are independent random variables, each with its own bounded
finite variance σ2

t and with a common mean µ. Then a fairly simple LLN
assures us that, as n→∞, x̄ tends to µ.

An example of how useful a law of large numbers can be is the Fundamental
Theorem of Statistics, which concerns the empirical distribution function,
or EDF, of a random sample. The EDF was introduced in Exercises 1.1
and 3.\4. Suppose that X is a random variable with CDF F (X) and that
we obtain a random sample of size n with typical element xt, where each
xt is an independent realization of X. The empirical distribution defined by
this sample is the discrete distribution that puts a weight of 1/n at each of
the xt, t = 1, . . . , n. The EDF is the distribution function of the empirical
distribution, and it can be expressed algebraically as

F̂ (x) ≡ 1−
n

n�

t=1

I(xt ≤ x), (4.44)

where I(·) is the indicator function, which takes the value 1 when its argument
is true and takes the value 0 otherwise. Thus, for a given argument x, the
sum on the right-hand side of (\4.\4\4) counts the number of realizations xt that
are smaller than or equal to x. The EDF has the form of a step function: The
height of each step is 1/n, and the width is equal to the difference between two
successive values of xt. According to the Fundamental Theorem of Statistics,
the EDF consistently estimates the CDF of the random variable X.

Copyright c� 1999, Russell Davidson and James G. MacKinnon

EDFs for three samples of sizes 20, 100, and 500 drawn from three normal

distributions, each with variance 1 and with means 0, 2, and 4, respectively
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Example 2: OLS under Classical Assumptions

Gauss-Markov Assumptions

A1: Linearity: y = β + β1x1 + ...+ βkxk + v

A2: Random Sampling

A3: Conditional Mean Independence:
E [y |x ] = β0 + β1x1 + ...+ βkxk

A4: Invertibility of Variance-covariance Matrix

A5: Homoskedasticity: Var [v |x ] = σ2

Normality

A6: Normality: y |x ∼ N(β0 + β1x1 + ...+ βkxk ,σ
2)

R. Mora QMicro: Large Sample Properties & Simulation
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OLS Consistency

Theorem

Under Gauss-Markov A1-A4, OLS is consistent

Example: wages = β0 + β1educ +u with cov(educ,u) = 0

β̂1 = β1 + ˆcov(educi ,ui )
ˆvar(educi )

plim
(

β̂1

)
= plim (β1) + plim( ˆcov(educi ,ui ))

plim( ˆvar(educi ))
= β1 + cov(educ,u)

var(educ)

Since cov(educ,u) = 0⇒ plim
(

β̂1

)
= β1

R. Mora QMicro: Large Sample Properties & Simulation



Large Sample Properties (W App. C3)
Small Sample Properties and Simulation

Monte Carlo Algorithms (DP 3.8)
Summary

An Example of Inconsistency

True Model: wages = β0 + β1educ + β2IQ + v

cov(educ ,v) = cov(IQ,v) = 0

cov(educ , IQ) 6= 0, β2 6= 0

Estimated equation by OLS: wages = γ̂0 + γ̂1educ + ûeduc

γ̂1 = β̂1 + β̂2
ˆcov(educ,IQ)
ˆvar(educ) ⇒ plim (γ̂1) = β1 + β2

cov(educ,IQ)
var(educ)

plim (γ̂1) 6= β1 if

intelligence is relevant:β2 6= 0

education is correlated to intelligence: cov(educ, IQ) 6= 0
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Asymptotic Normality

De�nition

As the sample size grows, the distribution of β̂j gets arbitrarily close
to the normal distribution

Technically: Pr(β̂j ≤ z)→ Φ(z) as n→ ∞

R. Mora QMicro: Large Sample Properties & Simulation
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The Central Limit Theorem: Some History

arguably, one of the most interesesting laws in maths, the
proof is astonishing simple ( but I must admit that I cannot
intuitively understand the result)

the �rst who thought about it was a French mathematician, de
Moivre, in 1733

Pierre Simon Laplace, another French, got the simplest version
right in 1812

the Russian Aleksander Liapunov was the guy who proved the
general case in 1901

R. Mora QMicro: Large Sample Properties & Simulation
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Rats and the Central Limit Theorem

go to the sewage system in Madrid

capture 100 rats, measure their tails,standardize the measures,
and compute the average times square root of 100

now capture more rats, say 500 rats, do as before using the
square root of 500 instead of the square root of 100

if the distribution of the second average is closer to the

standard normal, that's basically it

otherwise, instead of 500, try with a larger number of rats, say

10000

the point is: if you keep increasing the sample size, you will
CERTAINLY get closer to the normal

R. Mora QMicro: Large Sample Properties & Simulation
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Stars and the Central Limit Theorem

look at the brightness of 100 stars

yeah, that's it! you will CERTAINLY get as close as you want
to the normal after averaging by increasing sample size

what is remarkable about the CLT is that the random
distributions of star's brightness and rat's tails have nothing to
do with each other

the crucial issue is the averaging carried out over the measures
after measurement

R. Mora QMicro: Large Sample Properties & Simulation
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The Central Limit Theorem

For any random variable y with an expected value µ and variance
σ2 de�ne the average of a sample of size n as yn. Then

n
1/2 yn−µ

σ
→ N(0,1)as n→ ∞

Under Gauss-Markov A.1 to A.5

n
1/2 β̂j −βj

σ/aj

→ N(0,1)as n→ ∞ where aj ² = plim

(
1

n ∑
i

ˆres ji ²

)

Moreover: plim (σ̂²) = plim
(

SSR
n−k−1

)
= σ2

R. Mora QMicro: Large Sample Properties & Simulation
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Asymptotic Normality for OLS Estimators

As sample size n increases, the OLS estimators�conveniently
scaled up�get as close as we want to a normal distribution

n
1/2

β̂j ≈ N (βj ,σ ²aj ²)

the larger the sample, the more accurate the estimates

important: the expression for the asymptotic variance depends
on the homoskedasticity assumption

R. Mora QMicro: Large Sample Properties & Simulation
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The t Test

from the CLT (and a LLN), it can also be shown that

t =
β̂j −βj

se
(

β̂j

) → N (0,1) as n→ ∞

this result can be used to test whether a coe�cient is
signi�cant
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Small Sample Properties

the idea is to undertand the behavior of an estimator for a
given �xed sample size n

Under Gauss-Markov A.1 to A.5 AND Normality A.6

β̂j −βj

se(β̂j)
v tn−k−1

the problem is, normality is a very strong assumption

R. Mora QMicro: Large Sample Properties & Simulation
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Monte Carlo Experiments: De�nition and Motivation

De�nition

Monte Carlo experiments are a type of computational
algorithms that rely on repeated random sampling to compute
their results

Monte Carlo methods are often used in simulating physical and
mathematical systems

Tend to be used when it is unfeasible or impossible to compute
an exact result with a deterministic algorithm

We are going to use them to generate observational data to
study the behaviour of econometric techniques when samples
are not in�nite

R. Mora QMicro: Large Sample Properties & Simulation
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Why Monte Carlo?

the term was �rst used in the 1940s by physicists working on
nuclear weapons in the US

they wanted to solve a radiation problem but could not do it
analytically, so they decided to model the experiment using
chance

they codenamed the project �Monte Carlo� in reference to the
Monte Carlo Casino in Monaco where the uncle of one of them
would borrow money to gamble

it has been since used in many sciences

for economists, Monte Carlo techniques are important for
solving typical problems (integration, optimization) and also in
games and in applied statistics

R. Mora QMicro: Large Sample Properties & Simulation



Large Sample Properties (W App. C3)
Small Sample Properties and Simulation

Monte Carlo Algorithms (DP 3.8)
Summary

Monte Carlo in Applied Statistics

there are two main uses of Monte Carlo in applied statistics

to compare and contrast competing statistics for small samples

to study how small sample behaviour translates into

asymptotic results as samples become larger

Monte Carlo techniques strike a nice balance

usually, they are more accurate than asymptotic results

not as time consuming to obtain as are exact tests

R. Mora QMicro: Large Sample Properties & Simulation
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Monte Carlo vs. Simulation

a simulation is a �ctitious computer representation of reality

a Monte Carlo study is a technique that can be used to solve a
mathematical or statistical problem

A Monte Carlo simulation uses repeated sampling of simulated
data to determine the properties of some phenomenon

R. Mora QMicro: Large Sample Properties & Simulation
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A Simple Simulation Exercise

1 using a computer, draw a value from a pseudo-random uniform
variate from the interval [0,1]

2 If the value is less than or equal to 0.50 designate the outcome
as heads

3 if the value is greater than 0.50 designate the outcome as tails

this is a simulation of the tossing of a coin

R. Mora QMicro: Large Sample Properties & Simulation
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A Simple Monte Carlo Study

the area of an irregular �gure inscribed in a unit square

1 draw two values from a pseudo-random uniform variate from
the interval [0,1]

2 If the point identi�ed is within the �gure, designate the
outcome as �success�, otherwise, as failure

3 repeat steps 1 and 2 many times

4 the proportion of successes provides the area of the �gure

this is using simple Monte Carlo techniques to compute a
complex integral

R. Mora QMicro: Large Sample Properties & Simulation
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A Simple Monte Carlo Experiment

1 draw one value from a pseudo-random uniform variate from
the interval [0,1]

2 If the value is less than or equal to 0.50 designate the outcome
as heads, otherwise tails

3 repeat steps 1 and 2 many times

4 the proportion of heads is the Monte Carlo simulation of the
probability of heads
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Using Monte Carlo in Applied Statistics

we assume an econometric model and simulate it may times

from each simulated population, we can extract a sample of
size n and estimate the parameter of interest

by looking at the descriptive statistics of the estimates across
all simulated realities, we �estimate� the properties of the
estimator when the sample size is �xed

by increasing n and doing everything again, we �estimate� how
the estimator behaves when the sample size increases

R. Mora QMicro: Large Sample Properties & Simulation
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A Basic algorithm for a Monte Carlo experiment

A Monte Carlo experiment for a �xed sample of size N

1 assume values for the exogenous parts of the model or draw
them from their respective distribution function

2 draw a (pseudo) random sample of size N for the error terms
in the statistical model from their respective probability
distribution functions

3 calculate the endogenous parts of the statistical model

4 calculate the value (e.g. the estimate) you are interested in

5 replicate step 1 to 4 R times

6 examine the empirical distribution of the R values

R. Mora QMicro: Large Sample Properties & Simulation
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A simple Monte Carlo experiment

log(wages) = 10+0.05∗D +u, u ∼ N(0,1), D = 1 with prob. 0.3

1 draw N realizations of D

2 draw N realizations of u

3 compute log(wages)

4 OLS log(wages) on D and store β̂ r
1

5 replicate step 1 to 4 R times

6 examine the empirical distribution of β̂ r
1

R. Mora QMicro: Large Sample Properties & Simulation
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Summary

Large sample properties tell us how an estimator behaves as
the sample size becomes arbitrarily large.

Exact small sample properties are hard to get and sometimes
they require strong assumptions.

Monte Carlo simulations are useful in applied statistics.

We can study small sample properties of estimators.

We can also study how large sample properties are achieved in
practice.
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