Generalized Method of Moments Econometrics I

Ricardo Mora

Department of Economics Universidad Carlos III de Madrid Master in Industrial Economics and Markets

Generalized Method of Moments

Motivation

Method of Moments Generalized Method of Moments Testing Overidentifying Restrictions Summary

Motivation

Ricardo Mora GMM

æ

・ロト ・部ト ・ヨト ・ヨト

The Analogy Principle

- The Generalized Method of Moments (GMM) is a framework for deriving estimators
- GMM estimators use assumptions about the **moments** of the variables to derive an objective function
- The assumed moments of the random variables provide population moment conditions
- We use the data to compute the **analogous sample moment conditions**
- GMM estimates make the sample moment conditions as true as possible: This step is implemented by minimizing an objective function

Method of Moments

æ

イロト イポト イヨト イヨト

Method of Moments

- The Method of Moments (MM) is a particular type of GMM
- In the Method of Moments (MM), we have the same number of sample moment conditions as we have parameters
- In GMM, we may have more sample moment conditions than we have parameters

Unconditional Mean

We want to estimate $\mu = E[y]$

- Population condition: $E[y] \mu = 0$
- The sample moment condition

$$\frac{1}{N}\sum_{i=1}^{N}y_{i}-\hat{\mu}^{GMM}=0$$

• The GMM is obtained by solving the sample moment condition

$$\hat{\mu}^{GMM} = rac{1}{N}\sum_{i=1}^{N} y_i$$

This method dates back to Pearson (1895)

Ordinary Least Squares

Ordinary least squares (OLS) is an MM estimator

$$y_i = \beta x_i + u_i, \qquad E\left[u_i | x_i\right] = 0$$

•
$$E[y_i - \beta x_i | x_i] = 0 \Rightarrow E[x_i(y_i - \beta x_i)] = 0$$

- $E[x_i(y_i \beta x_i)] = 0$ are the population moment conditions
- The corresponding sample moment conditions:

$$\frac{1}{N}\sum_{i=1}^{N}\left[x_{i}\left(y_{i}-\hat{\beta}^{MM}x_{i}\right)\right]=0$$

This is the OLS estimator.

Instrumental Variables

Instrumental Variables is an MM estimator

$$y_i = \beta x_i + u_i$$

- $u_i = y_i \beta x_i$ is such that $E[y_i \beta x_i | z_i] = 0$, where $x_i, z_i \in \mathbb{R}^k$
- $E[y_i \beta x_i | z_i] = 0 \Rightarrow E[z_i(y_i \beta x_i)] = 0$
- $E[z_i(y_i \beta x_i)] = 0$ are the population moment conditions
- The corresponding sample moment conditions:

$$\frac{1}{N}\sum_{i=1}^{N}\left[z_{i}\left(y_{i}-\hat{\beta}^{MM}x_{i}\right)\right]=0$$

This is the IV estimator.

Generalized Method of Moments

э

イロト イポト イヨト イヨト

GMM vs. MM

- MM only works when the number of moment conditions equals the number of parameters to estimate
- If there are more moment conditions than parameters, the system of equations is algebraically over-identified and cannot be solved
- GMM chooses the estimates that minimize a quadratic form of the moment conditions
- GMM gets as close to solving the over-identified system as possible
- GMM reduces to MM when the number of parameters equals the number of moment conditions

GMM Definition

• Let heta be a k imes 1 vector of parameters such that

 $E[m(w_i,\theta)]=0_{q\times 1}$

where m() is a $q \times 1$, $q \ge k$, vector of known functions and w_i is the data on person i

• For any c, the q sample moments are $m_N(c) = \frac{1}{N} \sum_{i=1}^N m(w_i, c)$

$$\hat{ heta}^{GMM} \equiv rgmin m_N(c)' A_N m_N(c)$$

where A_N is a qxq matrix

GMM and the Moments Conditions

$$\hat{\theta}^{GMM} \equiv rgmin_{c} m_{N}(c)' A_{N} m_{N}(c)$$

where A_N is a qxq matrix

• First Order Conditions:

$$2\nabla m_N A_N m_N \left(\hat{\beta}^{GMM}\right) = 0_k$$

where ∇m_N is a kxq matrix with the k first derivatives of vector m_N

• The GMM estimator imposes in the sample k linear combinations of q moment conditions

Ordinary Least Squares

Ordinary least squares (OLS) is a GMM estimator

$$y_i = \beta x_i + u_i$$

• Define the *kx*1 vector of moments as:

$$m_N(b) = \frac{1}{N} \sum_{i=1}^{N} [x_i (y_i - bx_i)]$$

- $\hat{\beta}^{GMM} \equiv \arg\min_{b} m_{N}(b)' A_{N} m_{N}(b), A_{N} \text{ is } kxk$
- FOC: $2\nabla m_N A_N m_N \left(\hat{\beta}^{GMM}\right) = 0_k \iff m_N \left(\hat{\beta}^{GMM}\right) = 0_k$
- This is the same system of equations and has the same solution as the OLS estimator.

Instrumental Variables

IV is a GMM estimator

$$y_i = \beta x_i + u_i, \qquad E[u_i|z_i] = 0$$

• Define the kx1 vector of moments as:

$$m_N(b) = \frac{1}{N} \sum_{i=1}^{N} [z_i (y_i - bx_i)]$$

- $\hat{\beta}^{GMM} \equiv \arg\min_{b} m_{N}(b)' A_{N} m_{N}(b)$, A_{N} is kxk
- FOC: $2\nabla m_N A_N m_N \left(\hat{\beta}^{GMM} \right) = 0_k \iff m_N \left(\hat{\beta}^{GMM} \right) = 0_k$
- This is the same system of equations and has the same solution as the IV estimator.

2SLS and GMM

2SLS is a GMM estimator for a particular A_N

$$y_i = \beta x_i + u_i, \qquad E\left[u_i | z_i\right] = 0$$

where
$$x_i \in R^k$$
 and $z_i \in R^q$, $q > k$
• Take $A_N = \left(\frac{1}{N}\sum_{i=1}^N (z_i z'_i)\right)^{-1}$

The GMM estimator defined by

$$\nabla m_N A_N m_N \left(w_i, \hat{\beta}^{GMM} \right) = 0$$

э

イロト イポト イヨト イヨト

is the 2SLS estimator with instruments z_i .

Some Properties of GMM

• When
$$k = q$$
 (just-identified case),
 $m_N\left(\hat{\theta}^{MM}\right) = 0 \Rightarrow \hat{\theta}^{MM} \equiv \hat{\theta}^{GMM}$

Under general conditions, for a given weight matrix A_N, GMM is both consistent and asymptotically normal

• plim
$$\hat{\theta}^{GMM} = \theta$$

• $\sqrt{N} \left(\hat{\theta}^{GMM} - \theta \right) \xrightarrow{d} \mathcal{N}(0, W)$ where W can be consistently estimated

• Under general conditions, if

2 plim
$$m_N(c) = E[m(w, c)]$$
, and

3
$$AE[m(w,c)] = 0,$$

then

plim
$$\hat{\theta}^{GMM} = \theta$$

< 口 > < 同

æ

Asymptotic Normality

- Under general conditions, if
- **(1)** $\hat{\theta}^{GMM}$ is consistent,
- 2 plim $\frac{\partial m_N}{\partial c'} = D(c)$,
- $D'AD \ (D \equiv D(\theta))$ is non-singular, and

$$\sqrt{N}m_N(\theta) \xrightarrow{d} \mathcal{N}(0,V)$$

then

$$\sqrt{N}\left(\hat{\theta}^{GMM}-\theta\right)\stackrel{d}{\rightarrow}\mathcal{N}\left(0,W\right)$$

where $W = (D'AD)^{-1} D'AVAD(D'AD)^{-1}$

The Weight Matrix A_N

- A_N only affects the efficiency of the GMM estimator
- Setting A_N such that A = I yields consistent, but usually inefficient estimates
- Setting A_N such that $A = k [AsyVar(m_N(\theta))]^{-1}$ for any k > 0 yields an efficient GMM estimator
- Hence, in order to obtain an optimal estimator we need a consistent estimate of $AsyVar(m_N(\theta))$
- This can be done in a two-step procedure

An Efficient GMM

• We can take two steps to get an efficient GMM estimator

• Get
$$\hat{\theta}^{GMM1} \equiv \arg\min_{c} m_{N}(c)'m_{N}(c)$$
 to get
 $A_{N} = \left[\hat{Var}\left(m_{N}\left(\hat{\theta}^{GMM1}\right)\right)\right]^{-1}$
• Get $\hat{\theta}^{GMM2} \equiv \arg\min_{c} m_{N}(c)'A_{N}m_{N}(c)$

< 口 > < 同

• • = • • = •

æ

2SLS and Efficiency

- Under conditional homoskedasticity, i.e., $Var(u_i|z_i) = \sigma^2 E(z_i z'_i)$, 2SLS is optimal
- If conditional homoskedasticity is violated, then 2SLS is not optimal and the standard formula for the asymptotic variance will not be consistent
 - We can still use 2SLS as a consistent estimator
 - To do the correct inference, we would need an estimate of the variance robust to heteroskedasticity
- Under heteroskedasticity, we can estimate a two-step optimal GMM estimator:

Testing Overidentifying Restrictions

< 一型

The Sargan test

If all q > k restrictions are right,

$$Nm_N(\hat{\theta})' \left[\hat{Var}\left(m_N\left(\hat{\theta}\right)\right)\right]^{-1} m_N(\hat{\theta}) \stackrel{d}{\to} \chi^2_{q-k}$$

where $\hat{\theta}$ is the most efficient GMM estimator and $\hat{Var}\left(m_N\left(\hat{\theta}\right)\right)$ is a consistent estimator of $Var\left(m_N\left(\hat{\theta}\right)\right)$.

• the basic idea is that when all restrictions are right, then there will be q - k linear combinations of $m_N(\hat{\theta})$ that should be close to zero but are not exactly close to zero

Incremental Sargan test

- Suppose we have q > k restrictions.
- We can first test use $q_1 > k$, with $q_1 < q$, restrictions and get $\hat{\theta}^1$ and use the Sargan test

$$S^{1} \equiv Nm_{N}\left(\hat{\theta}^{1}
ight)^{\prime}\left[\hat{Var}\left(m_{N}\left(\hat{\theta}^{1}
ight)
ight)
ight]^{-1}m_{N}\left(\hat{\theta}^{1}
ight)\stackrel{d}{
ightarrow}\chi^{2}_{q_{1}-k}$$

• We can also use all q>k, restrictions and get $\hat{ heta}$ and use the Sargan test

$$S \equiv Nm_N\left(\hat{\theta}\right)' \left[\hat{Var}\left(m_N\left(\hat{\theta}\right)\right)\right]^{-1} m_N\left(\hat{\theta}\right) \stackrel{d}{\rightarrow} \chi^2_{q-k}$$

ullet We can test the validity of the $q-q_1$ additional restrictions

$$S^d \equiv S - S^1 \stackrel{d}{\rightarrow} \chi^2_{q-q_1}$$

Summary

- OLS, IV, and 2SLS are shown to be particular cases of GMM
- They will be efficient only under restrictive assumptions
- It is always possible to obtain a two-step consistent and asymptotically efficient GMM estimator
- When the model is over-identified, we can test the over-identifying restrictions or a subset of them