Introduction to Stata Programming Econometrics I

R. Mora

Department of Economics Universidad Carlos III de Madrid Master in Industrial Organization and Markets

Outline

- Introduction
- 2 Basics
- 3 Linear Regression
- 4 Summary

What is Stata?

- Stata is a statistical package and programming language widely used in econometrics
- Stata is available for Windows, Unix, and Mac OS and for 32-bit and 64-bit computers.
- Stata commands usually follow a simple syntax (brackets "[" & "]" mean optional):

```
command [varlist] [if] [in] [weight] [using filename] [,options] list country lexp gnppc if missing(gnppc) == 1 in 1/60, clean noobs
```

- To obtain help on a command (or function) type
 - help command_name
 help help // This gives help on the command "help"

How you should work with stata

- Always use a .do file for replicability
- Weep your results with a .log file
- Start every .do file with comments on project title, date, what the .do file does, ...

basic_example.do

Variable types

- Variable Types (help datatype & help compress):
 - Numeric variables contain real numbers: 1, 4.564, 0.1, float(.1), ...
 - There are 5 different types of numeric variables
 - String variables contain (up to 244) ASCII characters : "High Education", "High Education"
- You may convert between numeric and string variables (also help real())
 - string to numeric: encode
 - numeric to string: decode

Reading and Viewing Data

- Reading data (you can copy data directly from Excel,...):
 - use: use Stata dataset
 - input: you can type data directly (also with the data editor)
 - infile: ASCII in free format (see help infile1, infile2, & help infix)
 - insheet: ASCII, csv, one observation per line
- Viewing data:
 - describe: gives details of a dataset, such as name of variables, label of variable, etc.
 - summarize: summary descriptive statistics of a dataset/variable
 - list: shows content of variables
 - tabulate: lists each distinct value of a discrete variable and the number of times it occurs

Creating & Modifying Variables

```
generate: generate age_sq = age^2
egen: (an addition to generate with many options):
    egen avewght= mean(weight) if weight<./li>
replace: replace lwage = 0 if lwage >= .
recode: recode age (0/30=1) (31/50=2) (51/100=3), gen(age_major)
tabulate with option generate:
    tabulate age_major, generate(Dage) //creates 3 dummies
```

Operators & Functions

- Operators (see help operators):
 - Arithmetic: +, -, *, /, ^,
 - Logical and relational: &, |, !, >, <, >=, <=, ==, !=
- Functions (see help functions):
 - Mathematical: abs(x), exp(x), log(x), sqrt(x)...
 - Statistical: normal(z), invnormal(p), ttail(n,t)...
 - random-number functions, string functions, matrix functions,

• •

Data Management

- To load a file: use file1, clear // file1 now becomes data in Stata memory
- To order observations: sort year month //sort data by year and within year, by month
- keep & drop: keep/eliminate variables/observations keep age lnweight // keep only these two variables in data drop in 1/100 // drop 1st 100 obs of all variables
- collapse: make dataset of summary statistics collapse (mean) weight, by(foreign)
- To add observations: append using file2 // file2 may not share variables with file1
- To add variables: merge 1:1 id_var using file2 // 1 to 1 merge
- To save data on disk: save filename, replace

Macros

- Macros are symbols associated with characters or values
- Global macros remain in memory in the session global mydir "/media/MEI/Session_05_Introduction_to_Stata_Programming" global yourdir "C:/Desktop"
- Local macros are operational only in the context they are is born

```
local variables = "age agesq education income"
list `variables'
```


Loops & Branches

 Loops are used in repetitive tasks (see also foreach and while)

```
forvalues mynumber = 1(1)5 {
    display "loop number: `mynumber'"
}
```

• Branches: if

```
local i = 1991
while `i'<=2010 {
    use lfs`i'.dta, clear
    generate year = `i'
    if `i' > 1991 {
        append using lfs.dta
        }
    save lfs.dta, replace
    local i = `i' + 1
```

The Model

 In general, we will consider as many controls as we feel necessary:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$

- Controls are not correlated with u: $E(x_j u) = 0$, for j = 1, ..., k
- We want to
 - get estimates for $(\beta_0, \beta_1, ..., \beta_k)$
 - test hypothesis
 - predict from regression results
- We use WAGE1.DTA to show the use of regress

The wage1.dta

- The file contains data on wages for workers in the USA in 1976
- The number of observations equals 526 (workers)
- Original source: The 1976 Current Population Survey
- Used in textbook: pp. 7, 38, 76-77, 93, 123-124, 180, 190-192, 214, 222-223, 226-228, 232, 235, 254, 260-261, 311, 648 in Wooldridge

The regress command

```
regress depvar [indepvars] [if] [in] [weight] [, options]
```

- depvar: name of dependent variable
- indepvars: list of controls (in addition to a constant)
- typical options:
 - noconstant: suppresses constant term
 - robust: obtains robust estimates of the variance-covariance matrix (VCE) of the parameter estimates

The standard output from regress

regress lwage nonwhite female married

Source	l SS	df	MS	Number of obs	
Model Residual	+		520151	F(3, 522) Prob > F R-squared Adj R-squared	= 0.0000 = 0.1852
Total	148.329751	525 .282	253286	Root MSE	= .48117
lwage	Coef.	Std. Err.	t P> t	[95% Conf.	Interval]
nonwhite female married _cons	0513523 3600183 .2312673 1.660326	.069273 .0425981 .0436792 .0427254	-0.74 0.459 -8.45 0.000 5.29 0.000 38.86 0.000	1874405 4437031 .1454587 1.576391	.0847358 2763336 .317076 1.74426

Statistical Significance

To check if a regressor is significant, look at its p-value

$$H_0: \beta_{married} = 0$$
 $H_1: \beta_{married} \neq 0$

Source	SS	df	MS		Number of obs = 52 F(3, 522) = 39.5	-
Model Residual	27.4762326 120.853519		874421 520151		Prob > F = 0.000 R-squared = 0.185 Mdj R-squared = 0.180	0
Total	148.329751	525 .28	253286		Root MSE = .4811	7
lwage		Std. Err.	t	P> t	[95% Conf. Interval]
lwage + nonwhite female married		Std. Err. .069273 .0425981	-0.74 -8.45	P> t 0.459 0.000	[95% Conf. Interval 1874405 .084735 4437031276333 .1454587 .31707	- 8 6

What about nonwhite?

Robust Standard Errors: robust

regress lwage nonwhite female married, robust Linear regression Number of obs = 526 F(3, 522) = 36.72Prob > F= 0.0000 R-squared = 0.1852Root MSE .48117 Robust t P>|t| Coef. Std. Err. [95% Conf. Interval] lwage nonwhite | -.0513523 .0664889 -0.77 0.440 -.1819711 .0792664 female | -.3600183 .0415128 -8.67 0.000 -.441571 -.2784657 .2312673 .0439628 5.26 0.000 .1449017 .317633 married | 1.660326 .0441697 37.59 0.000 1.573554 1.747098 cons

 robust gives the same beta estimates (OLS). Estimates for the standard errors, however, use a formula which is generally better than the one used by default

Hypothesis testing: the test command

test tests linear hypothesis after estimation

```
H_o: \beta_{female} = -.4
. test female = -.4
(1) female = -.4
F(1, 522) = 0.93
Prob > F = 0.3359
```

 $p ext{-value}$ is larger than $0.10 o ext{we cannot reject the null at } 10\%$ significance level

The test command (II)

```
H_o:eta_{nonwhite}=eta_{female} . test nonwhite = female (1) nonwhite - female = 0 F(1, 522) = 15.38 Prob > F = 0.0001
```

p-value is smaller than 0.01 o we reject the null at 1% significance level

The test command (III)

```
H_o: eta_{female} = -0.40; eta_{married} = 0.25 . test (female=-.4) (married=.25) (1) female = -.4 (2) married = .25 F(2, 522) = 0.58 \\ Prob > F = 0.5630
```

we cannot reject the null at 10% significance level

- you can "accumulate" tests:
 - . test female = -.4
 - . test married = 0.25, accumulate

Other results: ereturn list

- regress is an e-class command: it produces estimates
- the results of an estimation command are automatically saved in macros, scalars, functions, and matrices with names e()
- ereturn list: lists all results stored after any estimation command
- results in e() are replaced when a subsequent e-class command is executed
- other commands are r-class commands: they get results which are not estimates. They are also store with names e(), but to see them, you have to type return list.

Using estimation results after regress

we can access and manipulate OLS estimates

Some of the saved results

Matrices

- Coefficients: e(b)
- Variance-covariance: e(V)

Scalars

- No. of observations in regression: e(N)
- No. of parameters: (df_m)
- Degrees of freedom: e(df r)
- R²: e(r2)
- Residuals Sum of Squares: e(rss)

Tables from several regressions: estimates

After several regressions, we may want results in one table

- estimates store regname# (as many times as regressions)
- 2 estimates table regname1 regname2

```
quietly regress lwage\ nonwhite //quietly suppresses the output estimates store reg1 quietly regress lwage\ nonwhite\ female estimates store reg2 quietly regress lwage\ nonwhite\ female\ married estimates store reg3 estimates table reg1\ reg2\ reg3, b(\%7.4f)\ se(\%7.4f)\ ///\ stats(N\ r2_a)\ title("All\ results")
```

est tab reg1 reg2 reg3, b(%7.4f) se(%7.4f) stats(N r2_a) title("All results")

All results

Variable	reg1	reg2	reg3
nonwhite	-0.0680 0.0764	-0.0752 0.0709	-0.0514 0.0693
female	0.0764	-0.3977 0.0431	-0.3600 0.0426
married		0.0431	0.2313
_cons	1.6303 0.0245	1.8215 0.0307	0.0437 1.6603 0.0427
N r2_a	526 -0.0004	526 0.1382	526 0.1806

legend: b/se

Prediction: predict

Obtain predictions, residuals, etc., after estimation

```
regress lwage female married if nonwhite == 0 // white obs predict ehat, res // we can generate residuals predict yhat, xb if e(sample) // pred. in estimation sample predict yhat_w, xb if nonwhite // nonwhite wages if whites
```

List of Basic Commands

- append
- capture
- clear
- collapse
- de code
- describe
- display
- drop
- egen
- encode
- ereturn list

- estimates store
- estimates table
- forvalues
- generate
- global
- help
- if
- infile
- input
- insheet
- keep

- list
- local
- log
- matrix define
- matrix list
- merge
- predict
- quietly
- recode
- regress
- replace

- return list
- savesort
- sort
- summarize
- sysuse
- tabulate
- test
- use
- version
- while

Summary

- Stata is a powerful statistical package
- It has many commands to easily manipulate data sets
- It is also a programming language
- OLS is easy to implement using Stata
- Linear hypothesis can be tested using a single command
- Results can be recovered from memory
- In and out-of-sample predictions are available