Estimation of Heckman's Selection Model using gret1 Quantitative Microeconomics

R. Mora

Department of Economics Universidad Carlos III de Madrid

Heckit and gret1

Outline

Introduction: Heckman's model

Introduction

Heckman's Selection Model

we observe w_i if $s_i = 1$

• output equation:
$$w = \beta_0 + \beta x + \varepsilon$$

• participation equation:
$$s = 1(\gamma' z + v)$$

•
$$\begin{bmatrix} u \\ v \end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_u^2 & \rho \\ \rho & 1 \end{bmatrix}\right)$$

Estimation

- OLS is inconsistent.
- ML estimation is consistent: the actual expression for the likelihood is more complicated than that of the probit and tobit model as it requires obtaining the joint distribution of w and s
 - In general, the likelihood function is not globally concave, and can have local maxima
- Heckman's two-stage procedure based on the conditional expectation gives consistent estimates and it is easy to implement.
 - It can be used to obtain initial conditions for MLE.
 - Usual standard errors from the second stage are not valid.

Heckman and gret1

Basic commands and functions for Heckit Estimation

- heckit: computes Heckman's selection model
- restrict: tests hypothesis for parameters on both equations

heckit *output x_vars* ; *selection z_vars* — two-step

- *output* represents the dependent variable in the output equation
- x vars represents the list of controls in the output equation
- *selection* represents the dependent variable in the participation equation
 - selection must be a binary $\{0,1\}$ variable
- z_vars represents the list of controls in the participation equation
- --two-step: conducts two-step Heckman's procedure, reporting correct standard errors (ML is default)

A Simple Example

Participation

•
$$U_m - U_h = -0.5 + 0.03 * educ - 1.5 * kids + v$$

Wage equation

•
$$wage = 5 + 0.07educ + u$$

•
$$cov(educ, u) = 0$$

• $\begin{bmatrix} u \\ v \end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0.9 \\ 0.9 & 1 \end{bmatrix}\right)$

A Simple Example: ols estimation ($eta_{educ}=.07, oldsymbol{ ho}=.9)$

ols wage const educ

Model 1: OLS, using observations 1-5000 (n = 1112) Missing or incomplete observations dropped: 3888 Dependent variable: wage Heteroskedasticity-robust standard errors, variant HC1 coefficient std. error t-ratio p-value 6.12441 0.0979021 62.56 0.0000 const *** 0.0561435 0.00689433 8.143 1.03e-15 *** educ Mean dependent var 6.904610 S.D. dependent var 0.826190 Sum squared resid 713.5680 S.E. of regression 0.801782 Adjusted R-squared R-squared 0.059060 0.058212 66.31550 P-value(F) F(1, 1110) 1.03e-15 Log-likelihood -1331.197 Akaike criterion 2666.394 Schwarz criterion 2676.422 Hannan-Quinn 2670.186

OLS bias

- In the example, we have the following:
 - The true returns to education are approximately 7% $(\beta_{educ} = .07)$.
 - The score for participation also depends on education $(\gamma_{educ} = .03)$.
 - Importantly, unobservable (for the econometrician) determinants on wages and unobservable determinants of participation are positively correlated ($\rho = .9$).
- This positive correlation implies that participants in the labor market with lower levels of education tend to have positive errors in wage equation.
- OLS under-estimates the returns to education:
 - 95% confidence interval:(4.26, 6.97)

Setting wage = 0 for missing wages ($eta_{educ} = .07, oldsymbol{ ho} = .9$)

Model 5: OLS, using observations 1–5000 Dependent variable: wage2						
Heteroskedasticity-robust standard errors, variant HC1						
	Coefficient	Std. Error	<i>t</i> -ratio	p-va	ue	
const	0.819650	0.157393	5.2077	0.000	00	
educ	0.0567067	0.0117025	4.8457	0.000	00	
Mean depender Sum squared re R ² F(1,4998) Log-likelihood Schwarz criterio	esid 42 0 23 —12	2586.28 S.E 004886 Adj 8.48076 P-v 2449.93 Aka). depender . of regress usted <i>R</i> ² alue(<i>F</i>) aike criterio anan–Quint	ion n	2.925883 2.919018 0.004687 1.30e-06 24903.86 24908.42	

OLS bias using the full sample

- The bias is not corrected when setting *wage* = 0 for those who do not participate.
- When we replace the true wage by 0 when *s* = 0, then the model becomes :

•
$$w = \begin{cases} \beta_0 + \beta x + \varepsilon \text{ if } s = 1\\ 0 \text{ if } s = 0 \end{cases}$$

• $s = 1(\gamma' z + v)$
• $\begin{bmatrix} u\\v \end{bmatrix} \sim N\left(\begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} \sigma_u^2 & \rho\\\rho & 1 \end{bmatrix}\right)$

• It can be proved that $\mathsf{E}(w|x) \neq \beta_0 + \beta_1 x + \varepsilon$.

ML estimation ($eta_{educ} = .07$, $m{ ho} = .9$)

heckit wage const educ ; work const educ kids

Model 3: ML Heckit, using observations 1-5000 Dependent variable: wage Selection variable: work

	coefficient	std. err	or t-ratio	p-value			
const educ lambda	4.97764 0.0700091 0.933032	0.110538 0.007057 0.037408	06 9.920				
Selection equation							
const educ kids	-0.473329 0.0257985 -1.46115	0.087732 0.006172 0.043899	36 4.180				
Mean dependent var sigma6.9234 1.0366Log-likelihood-3142.9 6306.8		5613 rho .936 Aka	. dependent v ike criterior nan-Quinn	0.900076			
Total observations: 5000 Censored observations: 3917 (78.3%)							

Two-stage estimation ($eta_{educ} = .07, oldsymbol{ ho} = .9$)

heckit wage const educ ; work const educ kids --two-step

Model 2: Two-step Heckit, using observations 1-5000 Dependent variable: wage Selection variable: work

	coefficient	std. error	t-ratio	p-value	
const	5.05706	0.121918	41.48	0.0000	***
educ	0.0690590	0.00713587	9.678	3.75e-22	***
lambda	0.874918	0.0541856	16.15	1.20e-58	***

Selection equation

const educ kids	-0.47311 0.02614 -1.48345	50 0.00	94129 629308 70196	-5.291 4.155 -31.55	1.21e-07 3.26e-05 1.82e-218	*** *** ***	
Mean depender sigma	nt var	6.923428 1.009690	S.D. d∉ rho	ependent va	0.81532 0.86652		
Total observations: 5000 Censored observations: 3917 (78.3%)							

- Both the ML and the two-step procedure give consistent estimates.
- The ML estimator is a bit more precise. This is true for large samples.
- Among the results, we also get estimates for the correlation of the errors.
 - Recall that if ho = 0, then there is no sample selection bias.

- Inference for the significance of the parameters in the output and participation equations can be carried out as usual.
- Prediction cannot be implemented using fcast

restrict

- The restrict command allows the simultaneous test of several restrictions.
 - The test is performed on the estimates of the last model estimated before the command is invoked.
 - After heckit, the numbering of the parameters follows the order of the display of the output.
 - The -quiet option hides the output of the restricted model estimation.

 To implement it, we create a block: restrict here we insert as many lines as restrictions to be tested end restrict

Example of testing

```
? restrict --quiet
? b[lambda]=0
? end restrict
Restriction:
b[lambda] = 0
Test statistic: chi^2(1) = 732.782, with p-value = 2.22441e-161
? restrict --quiet
? b[5]=0.03
? b[6]=-1.5
? end restrict
Restriction set
1: b[educ] = 0.03
2: b[kids] = -1.5
Test statistic: chi^2(2) = 0.635692, with p-value = 0.727715
```

Testing the significance of λ

- We can test the significance of the parameter associated to λ in the conditional expectation of the output equation.
- This test is a test of random sample selection.
- If the parameter is not significant, then we do not reject the null of random selection (and OLS is consistent).
- In the previous example, the null hypothesis is strongly rejected: we find evidence of nonrandom sample selection.

Marginal Effects

```
# marginal effects of another year of education
genr coeff=$coeff
genr beta=coeff[1:2]
genr gamma=coeff[4:6]
series educ0=educ
matrix x0={const,educ0}
series educ1=educ+1
matrix x1={const,educ1}
series x1b = x1*beta
series x0b = x0*beta
genr Mg_educ = mean(x1b-x0b)
```

Generated scalar Mg_educ = 0.0700091

Effects of the observed wages

- The previous marginal effect is on the unconditional expectation of wages.
- This is the relevant notion if what we want is the effect on the wage offers.
- If we want to learn the effect on average observed wages, we need to restrict the sample to those observed.
- The best way to do this is by using the analytical expression of the conditional expectation:

$$E[w|x,z,s=1] = x\beta + \rho\lambda(z\gamma)$$

- gret1 allows for estimation of Heckman's Selection Model.
- Both two-stage and ML estimation.
- Testing and prediction is computed as usual.