Estimation of Heckman’s Selection Model using gretl
Quantitative Microeconomics

R. Mora

Department of Economics
Universidad Carlos III de Madrid
Outline

1. Introduction: Heckman's model

2. Heckit and gretl
Introduction
Heckman’s Selection Model

We observe w_i if $s_i = 1$

- Output equation: $w = \beta_0 + \beta x + \varepsilon$
- Participation equation: $s = 1(\gamma' z + \nu)$
- $\begin{bmatrix} u \\ v \end{bmatrix} \sim N \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_u^2 & \rho \\ \rho & 1 \end{bmatrix} \right)$
Estimation

- OLS is inconsistent.
- ML estimation is consistent: the actual expression for the likelihood is more complicated than that of the probit and tobit model as it requires obtaining the joint distribution of w and s.
 - In general, the likelihood function is not globally concave, and can have local maxima.
- Heckman’s two-stage procedure based on the conditional expectation gives consistent estimates and it is easy to implement.
 - It can be used to obtain initial conditions for MLE.
 - Usual standard errors from the second stage are not valid.
Heckman and gretl
Basic commands and functions for Heckit Estimation

- `heckit`: computes Heckman’s selection model
- `restrict`: tests hypothesis for parameters on both equations
heckit output x_vars ; selection z_vars ——two-step

- output represents the dependent variable in the output equation
- x_vars represents the list of controls in the output equation
- selection represents the dependent variable in the participation equation
 - selection must be a binary \{0,1\} variable
- z_vars represents the list of controls in the participation equation
- ——two-step: conducts two-step Heckman’s procedure, reporting correct standard errors (ML is default)
A Simple Example

Participation

\[U_m - U_h = -0.5 + 0.03 \times \text{educ} - 1.5 \times \text{kids} + \nu \]

Wage equation

\[\text{wage} = 5 + 0.07 \times \text{educ} + u \]

- \(\text{cov}(\text{educ}, u) = 0 \)
- \(\begin{bmatrix} u \\ \nu \end{bmatrix} \sim N \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0.9 \\ 0.9 & 1 \end{bmatrix} \right) \)
A Simple Example: ols estimation \((\beta_{educ} = .07, \rho = .9) \)

```plaintext
ols wage const educ
```

Model 1: OLS, using observations 1-5000 (n = 1112)
Missing or incomplete observations dropped: 3888
Dependent variable: wage
Heteroskedasticity-robust standard errors, variant HC1

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>6.12441</td>
<td>0.0979021</td>
<td>62.56</td>
</tr>
<tr>
<td>educ</td>
<td>0.0561435</td>
<td>0.00689433</td>
<td>8.143</td>
</tr>
</tbody>
</table>

Mean dependent var 6.904610 S.D. dependent var 0.826190
Sum squared resid 713.5680 S.E. of regression 0.801782
R-squared 0.059060 Adjusted R-squared 0.058212
F(1, 1110) 66.31550 P-value(F) 1.03e-15
Log-likelihood -1331.197 Akaike criterion 2666.394
Schwarz criterion 2676.422 Hannan-Quinn 2670.186
In the example, we have the following:

- The true returns to education are approximately 7% \((\beta_{educ} = .07)\).
- The score for participation also depends on education \((\gamma_{educ} = .03)\).
- Importantly, unobservable (for the econometrician) determinants on wages and unobservable determinants of participation are positively correlated \((\rho = .9)\).

This positive correlation implies that participants in the labor market with lower levels of education tend to have positive errors in wage equation.

- OLS under-estimates the returns to education:
 - 95% confidence interval: \((4.26, 6.97)\)
Setting \(\text{wage} = 0 \) for missing wages (\(\beta_{\text{educ}} = .07, \rho = .9 \))

Model 5: OLS, using observations 1–5000

Dependent variable: \text{wage2}

Heteroskedasticity-robust standard errors, variant HC1

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Std. Error</th>
<th>(t)-ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>0.819650</td>
<td>0.157393</td>
<td>5.2077</td>
</tr>
<tr>
<td>educ</td>
<td>0.0567067</td>
<td>0.0117025</td>
<td>4.8457</td>
</tr>
</tbody>
</table>

Mean dependent var 1.581584 S.D. dependent var 2.925883
Sum squared resid 42586.28 S.E. of regression 2.919018
\(R^2 \) 0.004886 Adjusted \(R^2 \) 0.004687
\(F(1, 4998) \) 23.48076 P-value(\(F \)) 1.30e–06
Log-likelihood -12449.93 Akaike criterion 24903.86
Schwarz criterion 24916.89 Hannan–Quinn 24908.42
The bias is not corrected when setting \(\text{wage} = 0 \) for those who do not participate.

When we replace the true wage by 0 when \(s = 0 \), then the model becomes:

\[
\begin{align*}
\mathbf{w} &= \begin{cases}
\beta_0 + \beta \mathbf{x} + \varepsilon & \text{if } s = 1 \\
0 & \text{if } s = 0
\end{cases} \\
\mathbf{s} &= 1(\gamma' \mathbf{z} + \nu) \\
\begin{bmatrix} u \\ v \end{bmatrix} &\sim N \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix} , \begin{bmatrix} \sigma_u^2 & \rho \\
\rho & 1 \end{bmatrix} \right)
\end{align*}
\]

It can be proved that \(\mathbb{E}(\mathbf{w}|\mathbf{x}) \neq \beta_0 + \beta_1 \mathbf{x} + \varepsilon \).
ML estimation ($\beta_{educ} = .07, \rho = .9$)

```gretl
heckit wage const educ ; work const educ kids
```

Model 3: ML Heckit, using observations 1-5000

Dependent variable: wage

Selection variable: work

<table>
<thead>
<tr>
<th></th>
<th>coefficient</th>
<th>std. error</th>
<th>t-ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>4.97764</td>
<td>0.110538</td>
<td>45.03</td>
<td>0.0000 ***</td>
</tr>
<tr>
<td>educ</td>
<td>0.0700091</td>
<td>0.00705706</td>
<td>9.920</td>
<td>3.39e-23 ***</td>
</tr>
<tr>
<td>lambda</td>
<td>0.933032</td>
<td>0.0374084</td>
<td>24.94</td>
<td>2.62e-137 ***</td>
</tr>
</tbody>
</table>

Selection equation

<table>
<thead>
<tr>
<th></th>
<th>coefficient</th>
<th>std. error</th>
<th>t-ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>-0.473329</td>
<td>0.0877324</td>
<td>-5.395</td>
<td>6.85e-08 ***</td>
</tr>
<tr>
<td>educ</td>
<td>0.0257985</td>
<td>0.00617236</td>
<td>4.180</td>
<td>2.92e-05 ***</td>
</tr>
<tr>
<td>kids</td>
<td>-1.46115</td>
<td>0.0438994</td>
<td>-33.28</td>
<td>6.57e-243 ***</td>
</tr>
</tbody>
</table>

Mean dependent var 6.923428
S.D. dependent var 0.815325
sigma 1.036613
rho 0.900076
Log-likelihood -3142.936
Akaike criterion 6291.873
Schwarz criterion 6306.835
Hannan-Quinn 6297.538

Total observations: 5000
Censored observations: 3917 (78.3%)
Two-stage estimation \((\beta_{\text{educ}} = .07, \rho = .9)\)

heckit wage const educ ; work const educ kids ——two-step

Model 2: Two-step Heckit, using observations 1-5000
Dependent variable: wage
Selection variable: work

<table>
<thead>
<tr>
<th>coefficient</th>
<th>std. error</th>
<th>t-ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>5.05706</td>
<td>0.121918</td>
<td>41.48</td>
</tr>
<tr>
<td>educ</td>
<td>0.0690590</td>
<td>0.00713587</td>
<td>9.678</td>
</tr>
<tr>
<td>lambda</td>
<td>0.874918</td>
<td>0.0541856</td>
<td>16.15</td>
</tr>
</tbody>
</table>

Selection equation

<table>
<thead>
<tr>
<th>coefficient</th>
<th>std. error</th>
<th>t-ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>-0.473118</td>
<td>0.0894129</td>
<td>-5.291</td>
</tr>
<tr>
<td>educ</td>
<td>0.0261450</td>
<td>0.00629308</td>
<td>4.155</td>
</tr>
<tr>
<td>kids</td>
<td>-1.48345</td>
<td>0.0470196</td>
<td>-31.55</td>
</tr>
</tbody>
</table>

Mean dependent var: 6.923428
S.D. dependent var: 0.815325
sigma: 1.009690
rho: 0.866521

Total observations: 5000
Censored observations: 3917 (78.3%)
Both the ML and the two-step procedure give consistent estimates.

The ML estimator is a bit more precise. This is true for large samples.

Among the results, we also get estimates for the correlation of the errors.

Recall that if $\rho = 0$, then there is no sample selection bias.

Inference for the significance of the parameters in the output and participation equations can be carried out as usual.

Prediction cannot be implemented using fcast.
The `restrict` command allows the simultaneous test of several restrictions.

- The test is performed on the estimates of the last model estimated before the command is invoked.
- After `heckit`, the numbering of the parameters follows the order of the display of the output.
- The `--quiet` option hides the output of the restricted model estimation.

To implement it, we create a block:

```
restrict
here we insert as many lines as restrictions to be tested
end restrict
```
Example of testing

```
? restrict --quiet
? b[lambda]=0
? end restrict
Restriction:
  b[lambda] = 0

Test statistic: chi^2(1) = 732.782, with p-value = 2.22441e-161

? restrict --quiet
? b[5]=0.03
? end restrict
Restriction set
  1: b[educ] = 0.03
  2: b[kids] = -1.5

Test statistic: chi^2(2) = 0.635692, with p-value = 0.727715
```
Testing the significance of λ

- We can test the significance of the parameter associated to λ in the conditional expectation of the output equation.
- This test is a test of random sample selection.
- If the parameter is not significant, then we do not reject the null of random selection (and OLS is consistent).
- In the previous example, the null hypothesis is strongly rejected: we find evidence of nonrandom sample selection.
Marginal Effects

marginal effects of another year of education
genr coeff=$coeff
genr beta=coeff[1:2]
genr gamma=coeff[4:6]
series educ0=educ
matrix x0={const,educ0}
series educ1=educ+1
matrix x1={const,educ1}
series x1b = x1*beta
series x0b = x0*beta
genr Mg_educ = mean(x1b-x0b)

Generated scalar Mg_educ = 0.0700091
Effects of the observed wages

- The previous marginal effect is on the unconditional expectation of wages.

- This is the relevant notion if what we want is the effect on the wage offers.

- If we want to learn the effect on average observed wages, we need to restrict the sample to those observed.

- The best way to do this is by using the analytical expression of the conditional expectation:

\[E[w | x, z, s = 1] = x\beta + \rho \lambda (z\gamma) \]
Summary

- *gretl* allows for estimation of Heckman’s Selection Model.

- Both two-stage and ML estimation.

- Testing and prediction is computed as usual.