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Introduction

The Ordered Probit and ML Estimation

o Consider m observed outcomes: y =0,1,....m.
o Consider the latent variable model without a constant:

y*=x'B +e, e~ .4 (0,1)

@ Define m—1 cut-off points: o < ... < Am_1
@ We do not observe y*, but we observe choices according to the
following rule

y=0ify" <o
y=lifag <y " <m

y=mif o1 <y*

R. Mora Ordered Models in gretl



Introduction

ML estimation

@ Since:
Pr(y =0[x)=Pr(x¥'B+e<ay)=1-¢(x'B—0y)
Priy=1|x)=¢ (X'ﬁ — Ocl) ) (X’ﬂ —062)

Pry=m|x)=¢ (x’ﬁ — Ocm_l)

@ Thus, for a sample of N observations, the likelihood is:
N

L(B)=[T{ (1 - (xib—a))" " x

i=1
(@ (xtb— ) — b (xtb— ) VY x L x
(q) (x,{b— am_l))l(y.:m)
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Introduction
t1

Basic Commands in gretl for Ordered Probit Estimation

@ probit: computes Maximum Likelihood order probit
estimation if the dependent variable is not binary but is
discrete

omit/add: tests joint significance
$yhat: returns probability estimates

$1nl: returns the log-likelihood for the last estimated model

logit: computes Maximum Likelihood logit estimation if the
dependent variable is not binary but is discrete

@ in this Session, we are going to learn how to use probit for
ordered probit models
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Ordered Probit in gretl

probit depvar indvars ——robust ——verbose
——p-values

@ depwar must either take on only non-negative integer values,
or be explicitly marked as discrete.

o In case the variable has non-integer values, it will be recoded
internally.

@ by default, standard errors are computed using the negative
inverse of the Hessian.
@ options:

@ --robust: covariance matrix robust to model
misspecification
© --verbose: shows information from all numerical iterations
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Ordered Probit in gretl

Estimates

@ ML estimates for the B coefficients and for the cut-off points
are obtained.

o The latter are reported by gretl as cutl, cut2 and so on.

~

o $uhat yields generalized residuals; $yhat returns x'f8 .

o It is thus possible to compute an unbiased estimate of the
latent variable U simply by adding the two together.

@ Output shows xg statistic test for null that all slopes are zero
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Ordered Probit in gretl

Example: Simulated Data

e y*=0.07 x educ — 1.0 x kids + €, where € ~ .47(0,1)
y =0if h" <0.5 (inactive)
y=1if 0.5 < y* <2.5 (part-time)
y=2if 2.5 < y* (full-time)

@ education brings utility the more you work

@ having a kid brings more utility the less you work
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Ordered Probit

work educ kids

Model 1: Ordered Probit, using observations 1-5000
Dependent variable: work

coefficient std. error z p-value
educ 0.0795682 0.00402396 19.77 5.03e-87 x*x
kids -0.955750 0.0366670 -26.07 8.94e-150 ***
cutl 0.656064 0.0677545 9.683 3.56e-22 x*x
cut2 2.63981 0.0764705 34.52 JYIB=A01L

Mean dependent var 0.657000 S.D. dependent var 0.599852

Log-likelihood -3903.096 Akaike criterion 7814.193
Schwarz criterion 7840.262 Hannan-Quinn 7823.330
Number of cases 'correctly predicted' = 3107 (62.1%)

Likelihood ratio test: Chi-square(2) = 1054.95 [0.0000]

Test for normality of residual -
Null hypothesis: error is normally distributed
Test statistic: Chi-square(2) = 0.108987
with p-value = 0.946965
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Ordered Probit i

The LPM may give bad results

Model 2: OLS, using observations 1-5000
Dependent variable: work
Heteroskedasticity-robust standard errors, variant HC1

coefficient std. error t-ratio p-value
const 0.251884 0.0292683 8.606 1.00e-17 ***
educ 0.0354561 0.00169676 20.90 4.97e-93 k**
kids -0.431542 0.0152135 -28.37 3.02e-164 **x

Mean dependent var 0.657000 S.D. dependent var 0.599852

Sum squared resid 1457.253 S.E. of regression 0.540024
R-squared 0.189855 Adjusted R-squared 0.189531
F(2, 4997) 651.6896 P-value(F) 3.2e-252
Log-likelihood -4012.480 Akaike criterion 8030.960
Schwarz criterion 8050.512 Hannan-Quinn 8037.813
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Ordered Probit in gretl

To test joint significance, omit does not work

@ you cannot use omit to test joint significance using the Wald
test

omit educ kids —wald

No independent variables left after omissions

Error executing script: halting
> omit educ kids --wald

@ the result of the LR test is available in the output, and we can
still conduct it “by hand”
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Ordered Probit in gretl

LR test for the significance of all parameters

# estimating unrestricted model and storing loglikelihood
probit work educ kids --quiet
scalar lur= $1nl

# estimating restricted model and storing loglikelihood
probit work const --quiet
scalar lr= $1lnl

# computing the LR statistic and p-value
scalar LR=2*(lur-1lr)
scalar pval = pvalue(X, 1, LR)

@ The result coincides with the output in probit:

? printf " LR = %.8g\n p-value = %.8g\n", LR,pval
LR = 1054.9521
p-value = 2.0415848e-231
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Marginal Effects

Partial effects on predicted probabilities

@ How best to interpret results from ordered models?

o latent variable equation
° (9E(y|x) _ QPFS{TO\X) 0+ 3Pr y 1|x) X1+ ..+ (9Pr y m|x % m
J .I

Xj

e Alternatively, you might just want to report the effect on the
probability of observing the ordered categories
o if x; is discrete we compute as in the binary case the discrete
change in the predicted probabilities associated with changing
Xj.
o typically, partial effects for intermediate probabilities are
quantitatively small and often statistically insignificant.
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Marginal Effects

Marginal Effects: Discrete Change

Discrete change from xg to x;

@ estimate the model and store § and @

e predict index functions x5 and x;f3
@ generate the individual marginal effects

APr(y =0|x) = (x(/)ﬁf al) — o (x{[/i'\f al) - _A® (/Ef a1>

APr(y = 1|x) = A® (X’E— al) YN (X’E— ag)

APr(y = m|x) = Ad (x/ﬁ— &m—l)

@ compute the averages
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Marginal Effects

Example: Having an Additional Kid

# marginal effects of having an additional kid
probit work educ kids --quiet

genr beta=$coeff[1:2]

genr alpha=$coeff[3:4]

series kidsO=kids

matrix x0={educ,kids0}

series kidsl=kidsO0+1

matrix xl={educ,kidsl}

series xlb = xl*beta

series x0b = x0O*beta

series Mg_kid0 = (cdf(N,x0Ob-alpha[l])-cdf(N,xlb-alpha[l])
series Mg_kidl = (cdf(N,xlb-alpha[l])-cdf(N,x0b-alpha[l])

-(cdf(N,xlb-alpha[2])-cdf(N,x0b-alpha[2])
series Mg_kid2 = (cdf(N,xlb-alpha[2])-cdf(N,x0b-alpha[2])

\
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Marginal Effects

summary Mg_kid* ——simple

summary Mg_kid* --simple
Summary statistics, using the observations 1 - 5000

Mean Minimum Maximum Std. Dev.
Mg_kid0 0.31409 0.13797 0.36398 0.057924
Mg_kidl -0.25621 -0.31999 -0.13648 0.058980
Mg_kid2 -0.057872 -0.13917 -0.0014979 0.050060

@ having an extra child increases the probability of not working
by over 30 percentage points

@ this increase comes from reductions of 26.6 percentage points
in the probability of working part-time and of 5.8 percentage
points in the probability of working full time

R. Mora Ordered Models in gretl



t1
Marginal Effects

Marginal Effects: Infinitesimal Change

Calculus approximation

@ estimate the model and store § and &

@ predict index function x’f and compute its average x'[3
@ generate the calculus approximation:

S R
PG — (o (B -) -0 (x-)) B
Pr(y=2x) _, 5 s\
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Marginal Effects

Example of Calculus Approximation

# one extra year of education: calculus approximation
genr beta=$coeff[1:2]
genr alpha=$coeff[3:4]
matrix X={educ,kids}
series Xb=X*beta
scalar meanXb=mean(Xb)
scalar Mg_educ0=-pdf (N, meanXb-alpha[l])*$coeff (educ)
scalar Mg_educl= (pdf(N,meanXb-alpha[1l]) \
-pdf (N, meanXb-alpha[2]))*S$coeff (educ)
scalar Mg_educ2= pdf(N,meanXb-alpha[2])*$coeff (educ)

? printf " Mg _educO0 = %.8g\n Mg educl = %.8g\n Mg _educ2 = %.8g\n", \
Mg_educ0, Mg_educl, Mg_educ2

Mg_educO0 = -0.030702828
Mg_educl = 0.023540482
Mg_educ2 = 0.0071623465
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Effects on the ordered response variable

Effects on y

@ once we have the marginal effects for the probabilities,
obtaining the marginal effect on the ordered response variable
y is very simple

@ For the continuous case:

E(ylx) _aPr(y=1) 9Pr(y=2]x)

Ix; Ix; Ix; x2

@ For the discrete case:

AE (y|x) = APr(y = 1|x) +2 x APr(y = 2|x)
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Effects on the ordered response variable

# marginal effects on work
scalar EMg_kid=mean(Mg_kidl)+2*mean(Mg_kid2)
scalar EMg_educ=Mg_educl+2*Mg_educ2

? printf " EMg_kid = %.8g\n EMg_educ = %.8g\n", EMg_kid, EMg_educ
EMg_kid = -0.371958
EMg_educ = 0.037865175
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Summary

e gretl allows for ML estimation of the ordered probit and
ordered logit model

e marginal effects can be easily computed
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