Introduction
Ordered Probit in gret1
Marginal Effects
Effects on the ordered response variable
Summary

# Ordered Models in gret1 Quantitative Microeconomics

R. Mora

Department of Economics Universidad Carlos III de Madrid

### Outline

- Introduction
- Ordered Probit in gret1
- Marginal Effects
- 4 Effects on the ordered response variable

Introduction
Ordered Probit in gret1
Marginal Effects
Effects on the ordered response variable
Summary

#### Introduction

#### The Ordered Probit and ML Estimation

- Consider m observed outcomes: y = 0, 1, ..., m.
- Consider the latent variable model without a constant:

$$y^* = x'\beta + \varepsilon, \qquad \varepsilon \sim \mathcal{N}(0,1)$$

- ullet Define m-1 cut-off points:  $lpha_1 < ... < lpha_{m-1}$
- We do not observe  $y^*$ , but we observe choices according to the following rule

$$y = 0$$
 if  $y^* \le \alpha_1$   
 $y = 1$  if  $\alpha_1 < y^* \le \alpha_2$   
 $\vdots$   
 $y = m$  if  $\alpha_{m-1} < y^*$ 

#### ML estimation

Since:

$$\Pr(y = 0|x) = \Pr(x'\beta + \varepsilon \le \alpha_1) = 1 - \Phi(x'\beta - \alpha_1)$$

$$\Pr(y = 1|x) = \Phi(x'\beta - \alpha_1) - \Phi(x'\beta - \alpha_2)$$

$$\vdots$$

$$\Pr(y = m|x) = \Phi(x'\beta - \alpha_{m-1})$$

• Thus, for a sample of N observations, the likelihood is:

$$L(b) = \prod_{i=1}^{N} \left\{ \left( 1 - \Phi \left( x_i'b - \alpha_1 \right) \right)^{1(y_i = 0)} \times \right.$$

$$\left. \left( \Phi \left( x_i'b - \alpha_1 \right) - \Phi \left( x_i'b - \alpha_2 \right) \right)^{1(y_i = 1)} \times \dots \times \right.$$

$$\left. \left( \Phi \left( x_i'b - \alpha_{m-1} \right) \right)^{1(y_i = m)} \right\}$$

R. Mora Ordered Models in gret1

## Basic Commands in gret1 for Ordered Probit Estimation

- probit: computes Maximum Likelihood order probit estimation if the dependent variable is not binary but is discrete
- omit/add: tests joint significance
- \$yhat: returns probability estimates
- \$1n1: returns the log-likelihood for the last estimated model
- logit: computes Maximum Likelihood logit estimation if the dependent variable is not binary but is discrete
- in this Session, we are going to learn how to use probit for ordered probit models

Ordered Probit in gret1 Marginal Effects Effects on the ordered response variable Summary

# Ordered Probit in gretl

# probit depvar indvars --robust --verbose --p-values

- depvar must either take on only non-negative integer values, or be explicitly marked as discrete.
  - In case the variable has non-integer values, it will be recoded internally.
- by default, standard errors are computed using the negative inverse of the Hessian.
- options:
  - --robust: covariance matrix robust to model misspecification
  - 2 --verbose: shows information from all numerical iterations

#### Estimates

- ullet ML estimates for the eta coefficients and for the cut-off points are obtained.
  - The latter are reported by gretl as cut1, cut2 and so on.
- ullet \$uhat yields generalized residuals; \$yhat returns  $x'\widehat{oldsymbol{eta}}$  .
  - It is thus possible to compute an unbiased estimate of the latent variable *U* simply by adding the two together.
- ullet Output shows  $\chi_q^2$  statistic test for null that all slopes are zero

# Example: Simulated Data

#### Activity

• 
$$y^* = 0.07 \times educ - 1.0 \times kids + \varepsilon$$
, where  $\varepsilon \sim \mathcal{N}(0,1)$ 

$$y = 0$$
 if  $h^* \le 0.5$  (inactive)  
 $y = 1$  if  $0.5 < y^* \le 2.5$  (part-time)  
 $y = 2$  if  $2.5 < y^*$  (full-time)

- education brings utility the more you work
- having a kid brings more utility the less you work

### probit work educ kids

Model 1: Ordered Probit, using observations 1-5000 Dependent variable: work

|                                                                                                                                                                                                                                   | coefficient | std. error | z      | p-value   |     |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|--------|-----------|-----|--|--|--|--|--|--|
| educ                                                                                                                                                                                                                              | 0.0795682   |            |        |           | *** |  |  |  |  |  |  |
| kids                                                                                                                                                                                                                              | -0.955750   | 0.0366670  | -26.07 | 8.94e-150 | *** |  |  |  |  |  |  |
| cut1                                                                                                                                                                                                                              | 0.656064    | 0.0677545  | 9.683  | 3.56e-22  | *** |  |  |  |  |  |  |
| cut2                                                                                                                                                                                                                              | 2.63981     | 0.0764705  | 34.52  | 3.93e-261 | *** |  |  |  |  |  |  |
| Mean dependent var<br>Log-likelihood         0.657000<br>-3903.096         S.D. dependent var<br>Akaike criterion         0.599852<br>7814.193           Schwarz criterion         7840.262         Hannan-Quinn         7823.330 |             |            |        |           |     |  |  |  |  |  |  |
| Number of cases 'correctly predicted' = 3107 (62.1%)<br>Likelihood ratio test: Chi-square(2) = 1054.95 [0.0000]                                                                                                                   |             |            |        |           |     |  |  |  |  |  |  |
| Test for normality of residual -<br>Null hypothesis: error is normally distributed<br>Test statistic: Chi-square(2) = 0.108987<br>with p-value = 0.946965                                                                         |             |            |        |           |     |  |  |  |  |  |  |

# The LPM may give bad results

```
Model 2: OLS, using observations 1-5000
Dependent variable: work
Heteroskedasticity-robust standard errors, variant HC1
```

gooffigion+

|    |              | coeffic | 1ent    | sta.  | error           | t-ratio         | p-value               |     |
|----|--------------|---------|---------|-------|-----------------|-----------------|-----------------------|-----|
|    | const        | 0.2518  |         | 0.029 |                 | 8.606           | 1.00e-17              | *** |
|    | educ<br>kids | 0.0354  |         | 0.00  | L69676<br>52135 | 20.90<br>-28.37 | 4.97e-93<br>3.02e-164 | *** |
|    |              |         |         |       |                 |                 |                       |     |
| Me | an depende   | nt var  | 0.6570  | 000   | S.D. de         | ependent var    | r 0.5998              | 52  |
| Su | ım squared   | resid   | 1457.2  | 253   | S.E. of         | f regression    | n 0.5400              | 24  |
| R- | squared      |         | 0.1898  | 355   | Adjuste         | ed R-squared    | d 0.1895              | 31  |
| F( | 2, 4997)     |         | 651.68  | 396   | P-value         | ∋(F)            | 3.2e-2                | 52  |
| Lo | g-likeliho   | od      | -4012.4 | 180   | Akaike          | criterion       | 8030.9                | 60  |
| Sc | hwarz crit   | erion   | 8050.5  | 512   | Hannan-         | -Quinn          | 8037.8                | 13  |
|    |              |         |         |       |                 |                 |                       |     |

# To test joint significance, omit does not work

 you cannot use omit to test joint significance using the Wald test

```
omit educ kids —wald

No independent variables left after omissions

Error executing script: halting

> omit educ kids --wald
```

 the result of the LR test is available in the output, and we can still conduct it "by hand"

# LR test for the significance of all parameters

```
# estimating unrestricted model and storing loglikelihood
probit work educ kids --quiet
scalar lur= $lnl

# estimating restricted model and storing loglikelihood
probit work const --quiet
scalar lr= $lnl

# computing the LR statistic and p-value
scalar LR=2*(lur-lr)
scalar pval = pvalue(X, 1, LR)
```

The result coincides with the output in probit:

```
? printf " LR = %.8g\n p-value = %.8g\n", LR,pval
LR = 1054.9521
p-value = 2.0415848e-231
```

Introduction
Ordered Probit in gret1
Marginal Effects
Effects on the ordered response variable
Summary

## **Marginal Effects**

## Partial effects on predicted probabilities

- How best to interpret results from ordered models?
  - latent variable equation

• 
$$\frac{\partial E(y|x)}{\partial x_j} = \frac{\partial Pr(y=0|x)}{\partial x_j} \times 0 + \frac{\partial Pr(y=1|x)}{\partial x_j} \times 1 + ... + \frac{\partial Pr(y=m|x)}{\partial x_j} \times m$$

- Alternatively, you might just want to report the effect on the probability of observing the ordered categories
  - if x<sub>j</sub> is discrete we compute as in the binary case the discrete change in the predicted probabilities associated with changing x<sub>j</sub>.
  - typically, partial effects for intermediate probabilities are quantitatively small and often statistically insignificant.

# Marginal Effects: Discrete Change

#### Discrete change from $x_0$ to $x_1$

- ullet estimate the model and store  $\widehat{oldsymbol{eta}}$  and  $\widehat{oldsymbol{lpha}}$
- ullet predict index functions  $x_0'\widehat{oldsymbol{eta}}$  and  $x_1'\widehat{oldsymbol{eta}}$
- generate the individual marginal effects

$$\begin{split} \Delta \widehat{\Pr} \left( y = 0 | x \right) &= \Phi \left( x_0' \widehat{\beta} - \widehat{\alpha}_1 \right) - \Phi \left( x_1' \widehat{\beta} - \widehat{\alpha}_1 \right) = -\Delta \Phi \left( x' \widehat{\beta} - \widehat{\alpha}_1 \right) \\ \Delta \widehat{\Pr} \left( y = 1 | x \right) &= \Delta \Phi \left( x' \widehat{\beta} - \widehat{\alpha}_1 \right) - \Delta \Phi \left( x' \widehat{\beta} - \widehat{\alpha}_2 \right) \\ &\vdots \\ \Delta \widehat{\Pr} \left( y = m | x \right) &= \Delta \Phi \left( x' \widehat{\beta} - \widehat{\alpha}_{m-1} \right) \end{split}$$

compute the averages

# Example: Having an Additional Kid

```
# marginal effects of having an additional kid
probit work educ kids --quiet
genr beta=$cceff[1:2]
genr alpha=$cceff[3:4]
series kids0=kids
matrix x0={educ, kids0}
series kids1=kids0+1
matrix x1={educ, kids1}
series xlb = x1*beta
series x0b = x0*beta

series Mg_kid0 = (cdf(N,x0b-alpha[1])-cdf(N,x1b-alpha[1]))
series Mg_kid1 = (cdf(N,x1b-alpha[1])-cdf(N,x0b-alpha[1]))
-(cdf(N,x1b-alpha[2])-cdf(N,x0b-alpha[2]))
series Mg_kid2 = (cdf(N,x1b-alpha[2])-cdf(N,x0b-alpha[2]))
```

# summary $Mg_kid*$ ——simple

```
summary Mg kid* --simple
Summary statistics, using the observations 1 - 5000
                     Mean
                                  Minimum
                                                  Maximum
                                                               Std. Dev.
Mg kid0
                  0.31409
                                  0.13797
                                                  0.36398
                                                                0.057924
Mg kidl
                -0.25621
                                                 -0.13648
                                 -0.31999
                                                                0.058980
Ma kid2
                -0.057872
                                 -0.13917
                                               -0.0014979
                                                                0.050060
```

- having an extra child increases the probability of not working by over 30 percentage points
- this increase comes from reductions of 26.6 percentage points in the probability of working part-time and of 5.8 percentage points in the probability of working full time

# Marginal Effects: Infinitesimal Change

#### Calculus approximation

- ullet estimate the model and store  $\widehat{oldsymbol{eta}}$  and  $\widehat{oldsymbol{lpha}}$
- predict index function  $x'\widehat{\beta}$  and compute its average  $x'\widehat{\beta}$
- generate the calculus approximation:

$$\begin{split} &\frac{\partial \widehat{\Pr}\left(y=0|x\right)}{\partial x_{j}} = -\phi\left(\overline{x'}\widehat{\beta} - \widehat{\alpha}_{1}\right)\widehat{\beta}_{j} \\ &\frac{\partial \widehat{\Pr}\left(y=1|x\right)}{\partial x_{j}} = \left(\phi\left(\overline{x'}\widehat{\beta} - \widehat{\alpha}_{1}\right) - \phi\left(\overline{x'}\widehat{\beta} - \widehat{\alpha}_{2}\right)\right)\widehat{\beta}_{j} \\ &\frac{\partial \widehat{\Pr}\left(y=2|x\right)}{\partial x_{j}} = \phi\left(\overline{x'}\widehat{\beta} - \widehat{\alpha}_{2}\right)\widehat{\beta}_{j} \end{split}$$

# Example of Calculus Approximation

Introduction
Ordered Probit in gret1
Marginal Effects
Effects on the ordered response variable
Summary

Effects on the ordered response variable

# Effects on y

- once we have the marginal effects for the probabilities, obtaining the marginal effect on the ordered response variable y is very simple
- For the continuous case:

$$\frac{\partial \widehat{\mathsf{E}}(y|x)}{\partial x_j} = \frac{\partial \widehat{\mathsf{Pr}}(y=1|x)}{\partial x_j} \times 1 + \frac{\partial \widehat{\mathsf{Pr}}(y=2|x)}{\partial x_j} \times 2$$

• For the discrete case:

$$\Delta \widehat{\mathsf{E}}(y|x) = \Delta \widehat{\mathsf{Pr}}(y=1|x) + 2 \times \Delta \widehat{\mathsf{Pr}}(y=2|x)$$

```
# marginal effects on work
scalar EMg_kid=mean(Mg_kid1)+2*mean(Mg_kid2)
scalar EMg_educ=Mg_educ1+2*Mg_educ2
-. -
```

```
? printf " EMg_kid = %.8g\n EMg_educ = %.8g\n", EMg_kid, EMg_educ EMg_kid = -0.371958  
EMg_educ = 0.037865175
```

## Summary

- gret1 allows for ML estimation of the ordered probit and ordered logit model
- marginal effects can be easily computed