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We consider the following two extensions from binary dependent
models:

Ordered response models: The dependent variable takes a
number of �nite and discrete values that contain ordinal

information.

Multinomial response models: The dependent variable takes a
number of �nite and discrete values that DO NOT contain
ordinal information.

As in the probit and logit cases, the dependent variable is not
strictly continuous. Estimation will be carried out using the ML
estimator.
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Examples of ordered models

Credit rating, using seven categories, from �absolutely not
credit worthy� to �credit worthy�.

Decision to remain inactive, to work part-time, or to work
full-time.

In an income regression, income levels are coded in intervals:
[0,1000), [1000,1500)[1500,2000),[2000,∞)

On value statements, several answers with ordinal content:
�completely disagree�, �disagree�, �somewhat agree�,
�completely agree�
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Examples of multinomial models

Choice of transport mode: train, bus, car

Economic status: inactive, unemployed, self-employed,
employee

Education �eld choice: hard science, health sciences, social
sciences, humanities
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The two standard models are the ordered probit and the
ordered logit.

The approach is equivalent: we simply use for the ordered
probit the normal CDF Φ() and for the ordered logit the
logistic CDf Λ().

OLS does not work because the dependent variable does not
have cardinal meaning:

credit worthiness: 0,1,2,3,4,5: the change from 0 to 1 does
not have to be �equivalent� to the change from 4 to 5.
activity: inactive=0, part-time=1, full-time=2: While inactive
is zero hours of work, in practice code 1 re�ects any hours of
work between 1 and (usually) 30 hours of work, and code 2
re�ects more 30 hours of work. This implies that there is no
proportionality in going from 0 to 1 and going from 1 to 2.
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Simpli�cation

Binary choice models (LPM, probit, logit) could potentially be
used by grouping all categories into two major ones,

This is the case when the sample is small and the ordinal
categories can be logically be grouped in two major categories.

In some cases, this is probably a very bad idea (income
intervals).
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Consider three observed outcomes: y = 0,1,2.

Consider the latent variable model without a constant:

y∗ = β1x1 + ...+ βkxk + ε

where ε ∼N (0,1).

De�ne two cut-o� points: α1 < α2

We do not observe y∗, but we observe choices according to the
following rule

y = 0 if y∗ ≤ α1

y = 1 if α1 < y∗ ≤ α2

y = 2 if α2 < y∗
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Example: activity

y = 0 if inactive, y = 1 if part-time, y = 2 if full-time

y∗ = βe × educ + βk ×kids + ε , where ε ∼N (0,1)

Then

y = 0 if βe × educ + βk ×kids + ε ≤ α1

y = 1 if α1 < βe × educ + βk ×kids + ε ≤ α2

y = 2 if α2 < βe × educ + βk ×kids + ε

Note that we could alternatively introduce a constant β0 and
assume that α1 = 0.
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Interpretation

As in other nonlinear models, marginal e�ects can be
computed to learn about the partial e�ects of a small change
in explanatory variable xj .

For ordered models we can compute marginal e�ects on the
predicted probabilities along the same principles.
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Partial e�ects on predicted probabilities

For binary choice models, we focused on the e�ects on the
probability that y is equal to one.

In the ordered models, things are not so simple: we now have
more than two outcomes:

∂Pr(y = 0|x)

∂xj
=−φ

(
x ′β −α1

)
βj

∂Pr(y = 1|x)

∂xj
=
(
φ
(
x ′β −α1

)
−φ

(
x ′β −α2

))
βj

∂Pr(y = 2|x)

∂xj
= φ

(
x ′β −α2

)
βj

if xj is discrete we compute as in the binary case the discrete
change in the predicted probabilities associated with changing
xj .
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Partial E�ects

The partial e�ect of xj on the predicted probability of

the highest outcome has the same sign as βj .
the lowest outcome has the opposite sign to βj

intermediate outcomes cannot, in general, be inferred from the
sign of βj .

The last results is due to two o�setting e�ects. Suppose
βj > 0 and you increase xj . The intermediate category

may become more likely since the probability of the lowest
category falls.
may also become less likely because the probability of the
highest category increases.

Typically, partial e�ects for intermediate probabilities are
quantitatively small and often statistically insigni�cant.
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Discussion

How best to interpret results from ordered models?

One option is to look at the estimated β -parameters,
emphasizing the underlying latent variable equation with which
we started.

Another option might be to look at the e�ect on the expected
value of the ordered response variable, e.g.

∂E(y |x)

∂xj
=

∂Pr(y = 0|x)

∂xj
×0+

∂Pr(y = 1|x)

∂xj
×1+

∂Pr(y = 2|x)

∂xj
×2

This may make a lot of sense if y is a numerical variable, as in
the income variable.

Alternatively, you might just want to report the e�ect on the
probability of observing the ordered categories.
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The dependent variable is such that

more than two outcomes are possible
the outcomes cannot be ordered in any natural way.

Again, we could bunch two or more categories and so
construct a binary outcome variable from the raw data, but in
doing so, we throw away potentially interesting information.

OLS is also not a good model in this context.

However, the logit model for binary choice can be extended to
model more than two outcomes.
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Random Utility Model

Assume that there are three transport alternatives: bus, car,
train:

Ub = x ′bβb + εb

Uc = x ′cβc + εc

Ut = x ′tβt + εt

where {εb,εc ,εt} are the e�ects on utility unobserved by the
econometrician

If x ′bβb + εb ≥max {x ′cβc + εc ,x
′
tβt + εt} then y = 0

If x ′cβc + εc >max
{
x ′bβb + εb,x

′
tβt + εt

}
then y = 1

If x ′tβt + εt >max {x ′cβc + εc ,x
′
tβt + εt} then y = 2
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Notation

We have two unobserved independent e�ects

ε01 = εb− εc

ε02 = εb− εt

note that ε12 = εc − εt = ε02− ε01

De�ne

x ′bβb− x ′cβc = x ′β01

x ′bβb− x ′tβt = x ′β02
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Assumption

{ε01,ε02} ∼ F

where F is symmetric.

Then

Pr(y = 0|x) = Pr
(
x ′β01 + ε01 ≥ 0,x ′β02 + ε02 ≥ 0|x

)
= Pr

(
ε01 ≥−

(
x ′β01

)
,ε02 ≥−

(
x ′β02

)
|x
)

Given symmetry,

Pr(y = 0|x) = F
(
x ′β01,x

′
β02

)
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Multinomial Logit

We must model the probability that an individual belongs to
category j conditional to having characteristics x :

Pr(y = j |x)

When vector {εb,εc ,εt} has a extreme value distribution, then
we have the Multinomial Logit:

Pr(y = 0|x) = 1−Pr(y = 1|x)−Pr(y = 2|x)

Pr(y = 1|x) =
exp(x ′β1)

1+ exp(x ′β1) + exp(x ′β2)

Pr(y = 2|x) =
exp(x ′β2)

1+ exp(x ′β1) + exp(x ′β2)
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The main di�erence compared to the binary logit is that there
are now two parameter vectors, β1 and β2

in the general case with J possible responses, there are J−1
parameter vectors.

This makes interpretation of the coe�cients more di�cult
than for binary choice models.
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Interpretation with three alternatives

The easiest case to think about is where β1j and β2j have the same
sign.

If β1j and β2j are positive then an increase in the variable xj it
less likely that the individual belongs to category 0...

and Pr(yi = 1|xi ) +Pr(yi = 2|xi ) increases

to know how this total increase is allocated between these two
probabilities, we need to look at the marginal e�ects: the
partial derivative is very complex and the marginal e�ect
∂Pr(y=1|x)

∂xj
may in fact be negative even if β1j !
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Independence of irrelevant alternatives (IIA)

One important limitation of the multinomial logit is that the
ratio of any two probabilities l and m depends only on the
parameter vectors βl and βm and the explanatory variables x

Pr(y = 1|x)

Pr(y = 2|x)
=

exp(x ′β1)

exp(x ′β2)

=exp
(
x ′ (β1−β2)

)
The inclusion or exclusion of other categories is irrelevant to
the ratio of the two probabilities.

This behavior is referred to as the �independence of irrelevant
alternatives�, and it can lead to counter-intuitive behavior
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Example: IIA can be counter-intuitive

Individuals can commute to work by three transportation
means: blue bus, red bus, or train.

Individuals choose one of these alternatives, and the
econometrician estimates a multinomial logit modeling this
decision, and obtains an estimate of

Pr(y = red |x)

Pr(y = train|x)
=exp

(
x ′ (βred −βtrain)

)

Suppose that the bus company now removes the blue bus from

the set of options, do you think that Pr(y=red |x)
Pr(y=train|x)

would be the

same as before?
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Other multinomial models

There are lots of other econometric models that can be used
to model multinomial response models:

multinomial probit,
conditional logit,
nested logit

They are beyond the scope of the course.
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Summary

When the dependent variable has a �nite number of discrete
values, we can extend the probit and logit models

When the dependent variable entails some ordinal information,
then we can use ordered probit and logit models
When the dependent variable does not contain any ordinal
information, we can use multinomial models. One such
example is the multinomial logit.

These are all nonlinear models, and they can all be estimated
by MLE.
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