Introduction Exclusion Restrictions Linear Hypothesis Summary

Testing Hypothesis after Probit Estimation Quantitative Microeconomics

R. Mora

Department of Economics Universidad Carlos III de Madrid

Outline

- Introduction
- 2 Exclusion Restrictions
- 3 Linear Hypothesis

The Probit Model and ML Estimation

The Probit Model

- $U_m = \beta_m x_m + \varepsilon_m$
- $U_h = \beta_h x_h + \varepsilon_h$
- $\varepsilon_h, \varepsilon_m \sim N(0, \Sigma)$ such that $\varepsilon \sim N(0, 1)$
- $Pr(work = 1) = \Phi(\beta x)$ where Φ is the cdf of the standard normal

$$\hat{eta}^{ML} = rg \max_i \sum_i \left\{ work_i \log \left(\Phi(eta x_i) \right) + \left(1 - work_i \right) \log \left(1 - \Phi(eta x_i) \right) \right\}$$

in gret1, a quasi-Newton algorithm is used (the BFGS algorithm)

Asymptotic Properties and Testing

under general conditions, the MLE is consistent, asymptotically normal, and asymptotically efficient

- we can construct (asymptotic) t tests and confidence intervals (just as with OLS, 2SLS, and IV)
- exclusion restrictions
 - the Lagrange multiplier requires estimating model under the null
 - the Wald test requires estimation of only the unrestricted model
 - the likelihood ratio (LR) test requires estimation of both models

The Likelihood Ratio Test

The LR test

- it is based on the difference in loglikelihood functions
- as with the F tests in linear regression, restricting models leads to no-larger loglikelihoods

$$LR = 2\left(I_{ur} - I_r\right) \stackrel{a}{\rightarrow} \chi_q$$

where q is the number of restrictions

Basic Commands in gret1 for Probit Estimation

- probit: computes Maximum Likelihood probit estimation
- omit/add: LR or Wald tests for the joint significance
- \$yhat: estimates probabilities
- \$1n1: returns the log-likelihood for the last estimated model
- logit: computes Maximum Likelihood logit estimation
- in this Session, we are going to learn how to use omit, add, and \$lnl

Example: Simulated Data

The Probit Model

- $U_m = 0.3 + 0.05 * educ + 0.5 * kids + \varepsilon_m$
- $U_h = 0.8 0.02 * educ + 2 * kids + \varepsilon_h$
- $\varepsilon_h, \varepsilon_m \sim N(0, \Sigma)$ such that $\varepsilon \sim N(0, 1)$
- education brings utility if you work, dissutility if you don't
- having a kid brings more utility if you don't work
- $\beta x = -0.5 + 0.07 * educ 1.5 * kids$

probit Output

probit work const educ kids

Convergence achieved after 6 iterations

Model 1: Probit, using observations 1-5000 Dependent variable: work

	COETITI	TEIL	stu.	error	t-1at10		stope
const educ kids	-0.4344 0.0659 -1.4759	9247	0.00	12490 576068 97604	-5.347 11.44 -36.21		.0240325 .521270
Mean depende McFadden R-s Log-likeliho Schwarz crit	quared od	0.3668 0.2332 -2519.5 5064.6	290 525	Adjuste	ependent va ed R-square criterion Quinn		0.364545 0.232378 5045.049 5051.902
Number of cases 'correctly predicted' = 3859 (77.2%) f(beta'x) at mean of independent vars = 0.365 Likelihood ratio test: Chi-square(2) = 1533.26 [0.0000]							

coefficient std error t-ratio

Predicted 0

Actual 0 2495 671 1 470 1364

omit varlist --wald --quiet

- varlist is a subset of controls in the last model estimated
- ullet it gives the likelihood-ratio test for the joint significance of the variables in varlist
- if the ——wald option is given, the statistic is an asymptotic Wald chi-square value based on the covariance matrix of the original model
- using the ——quiet option:
 - only the result of the test is printed
 - the restricted model does not become the last estimated model in gretl's memory (for access to \$coeff, \$yhat, \$uhat, and \$lnl)

Example: the LR test

omit $educ\ kids$ ——quiet

Null hypothesis: the regression parameters are zero for the variables educ, kids

```
Likelihood ratio test:

Chi-square(2) = 1533.26, with p-value = \theta
```

Example: the Wald test

omit educ kids --wald

```
Null hypothesis: the regression parameters are zero for the variables educ, kids Asymptotic test statistic: Wald chi-square(2) = 1362.14, p-value = 1.636 8e-2 F-form: F(2, 4 ) \neq 681.072, p-value = 2.71422e-262
```

add varlist —quiet

```
? probit work const
Convergence achieved after 4 iterations
Model 2: Probit, using observations 1-5000
Dependent variable: work
            coefficient std. error z
                                              slope
           -0.340341 0.0181027 -18.80
  const
                              S.D. dependent var 0.376494
Mean dependent var 0.366800
McFadden R-squared 0.000000
                             Adjusted R-squared
                                                        NA
Log-likelihood -3286.153 Akaike criterion
                                                  6574.306
Schwarz criterion
                   6580.823
                             Hannan-Ouinn
                                                  6576.590
Number of cases 'correctly predicted' = 3166 (63.3%)
f(beta'x) at mean of independent vars = 0.376
          Predicted
  Actual 0 3166
        1 1834
? add educ kids --quiet
 Null hypothesis: the regression parameters are zero for the
variables
   educ, kids
  Asymptotic test statistic:
   Wald chi-square(2) = 1362.14, with p-value = 1.63698e-296
   F-form: F(2, 4997) = 681.072, with p-value = 2.71422e-262
```

Linear Hypothesis Testing Using the LR

 since we can recover the log-likelihood, it is possible to compute tailor-made likelihood ratio tests

$$\beta x = -0.5 + 0.07 * educ - 1.5 * kids$$

- $H_0: 2*\beta_{educ} = -\beta_{kids}$
- ullet estimate the unrestricted model and store the log-likelihood, l_{ur}
- \bullet estimate the restricted model and store the log-likelihood, I_r
- compute the likelihood ratio, $LR = 2 * (I_{ur} I_r)$
- ullet compute its asymptotic p-value under the null: $\Pr(\chi_1^2 > LR)$

Testing Linear Hypothesis in gret1

- \$1n1: returns the log-likelihood for the last estimated model
- pvalue(c [, argument,...], value): Returns Pr(X > x), where
 - the distribution X is determined by the character c
 - required parameter(s) for X are set with argument (,...)
 - ullet x is determined by value

Examples

•
$$p1 = pvalue(z, 2.2)$$

•
$$p2 = pvalue(X, 3, 5.67)$$

Example: $H_0: 2*\beta_{educ} = -\beta_{kids}$

Unrestricted model: $\beta x = \beta_0 + \beta_{educ} * educ + \beta_{kids} * kids$

Restricted model: $\beta x = \beta_0 + \beta_{educ} * (educ - 2 * kids)$

```
outfile --write null

# estimating unrestricted model and storing loglikelihood
problt work const educ kids --quiet
scalar lur= $in1

# estimating restricted model and storing loglikelihood
genr x=educ-2*kids
problt work const x --quiet
scalar lr= $in1

# computing the LR statistic and p-value
scalar LR=2*(lur-lr)
scalar pval = pvalue(X, 1, LR)

# printout
outfile --close
printf *\niikelihood Ratio test\nHO: 2*beta_educ+beta_kids=0\nLR
.8g p-value %.8g, \n", LR, pval
```

Example's Output

```
Likelihood Ratio test
H0: 2*beta_educ+beta_kids=0
LR 1139.6918 p-value 7.8025612e-250
```

Summary

- gret1 allows for testing exclusion restrictions after probit estimation
- the likelihood ratio and the wald tests are available
- it is not difficult to test homogeneous linear hypothesis with a little bit of programming